Advertisement

3D segregated architecture BaTiO3/polystyrene composites with enhanced dielectric constant fabricated via hot pressing core–shell polystyrene@BaTiO3 composite microspheres

  • 23 Accesses

Abstract

How to obtain high dielectric constant using low filler content is one of the urgent problems to be solved in the research field of ceramic/polymer dielectric materials. In traditional methods (fillers are randomly distributed), filler particles are isolated by thick layers of polymers (with low dielectric constant), which usually result in ultra-low enhancement efficiencies of dielectric constant for the composites. To solve the above puzzle, this study provides a new strategy to improve the dielectric constant of ceramic/polymer composites, that is constructing 3D segregated architectures of BaTiO3 (BT networks) in polystyrene (PS) matrix. This strategy is expected to enhance dielectric interaction between BT particles and greatly improve the dielectric constant of BT/PS composites. In this method, PS@BT core–shell microspheres were firstly fabricated by electrostatic self-assembling the BT particles on PS microspheres. BT/PS composites with BT networks were constructed by hot pressing above core–shell microspheres. Microstructures of PS@BT microspheres and BT/PS composites were investigated. Dielectric properties of BT/PS composites with various BT contents were studied. Results show that dielectric constant of the BT/PS composites is up to 41.8 when BT content is only 30vol%, which is much higher than that of traditional composites. This research provides us a facile method to design and fabricate ceramic/polymer composites with high dielectric constant and low loss.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    P. Banerjee, A. Franco Jr., Substitution-induced near phase transition with Maxwell–Wagner polarization in SrBi2(Nb1−xAx)2O9 ceramics [A = W,Mo and x = 0, 0.025]. Phys. Status Solidi A 214, 1700067 (2017)

  2. 2.

    P. Banerjee, A. Franco Jr., Influence of Y and Co co-doping in the multiferroic behaviors of BiFeO3 ceramics. J. Mater. Sci. 28, 8562–8568 (2017)

  3. 3.

    M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)

  4. 4.

    P. Banerjee, A. Franco Jr., Enhanced dielectric and magnetic properties in multiferroic Bi0.99Y0.01Fe0.99Ni0.01O3 ceramic. Mater. Lett. 184, 17–20 (2016)

  5. 5.

    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

  6. 6.

    M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Electromagnetic functions of patterned 2D materials for micro–nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019)

  7. 7.

    S. Aboubakr, A. Hajjaji, M. Rguiti, K. Benkhouja, C. Courtois, A high dielectric composite for energy storage application. Int. J. Hydrogen Energy 42, 19504–19511 (2017)

  8. 8.

    P. Barberjee, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2, 1697–1733 (2009)

  9. 9.

    L. Wang, H. Luo, X.F. Zhou, X. Yuan, K.C. Zhou, D. Zhang, Sandwich-structured all-organic composites with high breakdown strength and high dielectric constant for film capacitor. Compos. A 117, 369–376 (2019)

  10. 10.

    G. Gallone, F. Carpi, D.D. Rossi, G. Levita, A. Marchetti, Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobite-lead titanate. Mater. Sci. Eng. C 27, 110–116 (2007)

  11. 11.

    M.O. Aydogdu, N. iEkren, M. Suleymanoglu, E.K. Serap, C.C. Lin, E. Bulbul, N. Oktar, U.K. Terzi, O. Kilic, O. Gunduz. Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications. Colloid. Surf. B 172, 718–727 (2018)

  12. 12.

    F. Liu, J.J. Qu, H.G. Yan, C.L. Yuan, R.F. Ma, H.L. Li, C.R. Zhou, G.H. Chen. Phase structures, microstructures, and dielectric characteristics of high εr (1−x−y)Bi0.5Na0.5TiO3−xLi0.5Sm0.5TiO3–yNa0.5La0.5TiO3 microwave ceramic systems. Ceram. Int. 15, 7839–7849 (2019)

  13. 13.

    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)

  14. 14.

    Y.F. Chen, Y.Z. Wu, G.Q. Dai, Y.Y. Ma, Effect of functionalized graphene on mechanical properties and dielectric constant of bismaleimide composites. J Mater Sci 30, 6234–6241 (2019)

  15. 15.

    Y.F. Chen, Y.Z. Wu, C.B. Geng, Z.G. Li, G.Q. Dai, W.W. Cui, Curing Kinetics and the properties of KH560-SiO2/polyethersulfone/bismaleimide-phenolic epoxy resin composite. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01290-1

  16. 16.

    X.Y. Huang, B. Sun, Y.K. Zhu, S.T. Li, P.K. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019)

  17. 17.

    P. Banerjee, S.K. Biswas, Dielectric properties of EVA rubber composites at microwave frequencies theory, instrumentation and measurements. J. Microw. Power Electromagn. Energy 45, 24–29 (2011)

  18. 18.

    B. Zhang, F. Ye, Y. Gao, S.C. Liu, Q. Liu, D. H. Ding. D Fabrication and dielectric properties of BADCy/Ni0.5Ti0.5NbO4 composites for ultra-low-loss printed circuit board application. Ceram. Int. 42, 234–241 (2016)

  19. 19.

    Z.M. Dang, Y.F. Yu, H.P. Xu, J.B. Bai, Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos. Sci. Technol. 68, 171–177 (2008)

  20. 20.

    Z. Wang, M.R. Fang, H.J. Li, Y.F. Wen, C. Wang, Y.P. Pu, Enhanced dielectric properties in poly (vinylidene fluoride) composites by nanosized Ba(Fe0.5Nb0.5)O3 powders. Compos. Sci. Technol. 117, 410–416 (2015)

  21. 21.

    C. Yang, H.S. Song, D.B. Liu, Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Compos. B 50, 180–186 (2013)

  22. 22.

    R. K. Goyal, S.S. Katkade, D.M. Mule. Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Compos. B 44, 128–132 (2013)

  23. 23.

    W. Wan, J.R. Luo, C.E. Huang, J. Yang, Y.B. Feng, W.X. Yuan, Y.J. Ouyang, D.Z. Chen, T. Qiu, Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility. Ceram. Int. 44, 5086–5092 (2018)

  24. 24.

    G.M. Odegard, Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52, 5315–5330 (2004)

  25. 25.

    J.W. Merz, The dielectric behavior of BaTiO3 single-domain crystals. Phys. Rev. 75, 687 (1949)

  26. 26.

    Z.F. Zhang, X.F. Bai, J.W. Zha, W.K. Li, Z.M. Dang, Preparation and dielectric properties of BaTiO3/epoxy nanocomposites for embedded capacitor application. Compos. Sci. Technol. 97, 100–105 (2014)

  27. 27.

    Z.M. Dang, Y.Q. Lin, H.P. Xu, C.Y. Shi, S.T. Li, J. Bai, Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films. Adv. Funct. Mater. 18, 1509–1517 (2008)

  28. 28.

    D.W. Kim, B.K. Kim, H.J. Je, J.G. Park, Direct assembly of BaTiO3-polymethylmethacrylate nanocomposite films. Macromol. Rapid Commun. 27, 1821–1825 (2006)

  29. 29.

    K. Yang, X.Y. Huang, L.Y. Xie, C. Wu, P.K. Jiang, T. Tanaka, Core-Shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol. Rapid Commun. 33, 1921–1926 (2012)

  30. 30.

    B. Zhang, F. Ye, Y. Gao, Q. Liu, S.C. Liu, L.M. Liu. Dielectric properties of BADCy/Ni0.5Ti0.5NbO4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Compos. Sci. Technol. 119, 75–84 (2015)

  31. 31.

    S.B. Luo, Y.B. Shen, S.H. Yu, Y.J. Wan, W.H. Liao, R. Sun, C.P. Wong, Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10, 137–144 (2017)

  32. 32.

    Y. Jiang, Y.J. Liu, P. Ming, G.X. Sui, BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities. Compos. Sci. Technol. 144, 63–69 (2017)

  33. 33.

    T. Thongtem, N. Tipcompora, A. Phuruangratb, S. Thongtem, Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical method. Mater. Lett. 64, 510–512 (2010)

  34. 34.

    Y.P. Shen, A.J. Gu, G.Z. Liang, L. Yuan, High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance. Compos. A 41, 1668–1676 (2010)

  35. 35.

    M. Yang, L. Szyc, T. Elsaesser, Femtosecond two-dimensional infrared spectroscopy of adenine-thymine base Pairs in DNA oligomers. J. Phys. Chem. B 115, 1261–1267 (2011)

  36. 36.

    W.L. Wei, K.G. Qu, J.S. Jin, X.G. Qu, Chiral detection using reusable fluorescent amylose-functionalized graphene. Chem. Sci. 2, 2050–2056 (2011)

  37. 37.

    F.R. Shan, Z.M. Yu, L.S. Luo, Y. Zhang, Study on surface modification of nano-alumina by silane coupling agent KH550. New Chem. Mater. 41, 169–185 (2013)

  38. 38.

    A.S. Ethiraj, D.J. Kang, Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70–74 (2012)

Download references

Acknowledgements

This work was supported by Chinese Postdoctoral Science Foundation (Grant No. 2018M631925), Heilongjiang Postdoctoral Fund (Grant No. LBH-Z17089) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2019004).

Author information

Correspondence to Biao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Zhang, B., Jin, Y. et al. 3D segregated architecture BaTiO3/polystyrene composites with enhanced dielectric constant fabricated via hot pressing core–shell polystyrene@BaTiO3 composite microspheres. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02856-3

Download citation

Keywords

  • High dielectric
  • Core–shell
  • Polymer matrix composite
  • BaTiO3