Red emission from a novel rare earth free oxide-based CaO–0.5Al2O3–0.5Nb2O5:Mn4+ phosphor with high water-resistance property

  • Dongyu He
  • Yongzheng FangEmail author
  • Ganghua Zhang
  • Yan Zhou
  • Yufeng Liu
  • Guoying Zhao
  • Jingshan HouEmail author


A 657 nm red emission from a novel rare earth free oxide-based CaO–0.5Al2O3–0.5Nb2O5:xMn4+ (0.001 ≤ x ≤ 0.008) phosphors with high water-resistance property were prepared by solid-state reaction method. The composition and structure of the as-prepared phosphors was studied. Under relative ultraviolet (331/365 nm) and blue (465 nm) light excitation, the as-prepared phosphor presents a 657 nm red emission that assigned to the 2Eg → 4A2g transition of Mn4+ ions. The red light source in CaO–0.5Al2O3–0.5Nb2O5:Mn4+ system was discussed, and the water resistance property of the phosphor was also investigated. The as-prepared phosphor presents more proper red emission position than those of similar oxide-based Mn4+-activated phosphors and shows excellent water-resistance property compared with commercial used K2SiF6:Mn4+ phosphor. With the further optimization of its photo-luminescent properties, the as-prepared CaO–0.5Al2O3–0.5Nb2O5:Mn4+ phosphors may find its potential application in the field of white LEDs.



This work is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Numbers: 51672177, 51902203, 61605115) and the Program of Shanghai Academic/Technology Research Leader (Grant No. 19XD1434700).


  1. 1.
    J. Li, Q. Liang, J.Y. Hong, J. Yan, L. Dolgov, Y. Meng, Y. Xu, J. Shi, M. Wu, A.C.S. Appl, Mater. Interfaces 10, 18066 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Dalal, V.B. Taxak, J. Dalal, A. Khatkar, S. Chahar, R. Devi, S.P. Khatkar, J. Alloy. Compd. 698, 662 (2017)CrossRefGoogle Scholar
  3. 3.
    A.J. Huang, Z.W. Yang, C.Y. Yu, Z.Z. Chai, J.B. Qiu, Z.G. Song, J. Phys. Chem. C 121, 5267 (2017)CrossRefGoogle Scholar
  4. 4.
    H.D. Nguyen, R.S. Liu, J. Mater. Chem. C 4, 10759 (2016)CrossRefGoogle Scholar
  5. 5.
    K.T. Bicanic, X.Y. Li, R.P. Sabatini, N. Hossain, C.F. Wang, F.J. Fan, H.Y. Liang, S. Hoogland, E.H. Sargent, ACS Photonics 3, 2243 (2016)CrossRefGoogle Scholar
  6. 6.
    Y.W. Zhu, L.Y. Cao, M.G. Brik, X.J. Zhang, L. Huang, T.T. Xuan, J. Wang, J. Mater. Chem. C 5, 6420 (2017)CrossRefGoogle Scholar
  7. 7.
    Z.G. Xia, Q.L. Liu, Progr. Mater. Sci. 84, 59 (2016)Google Scholar
  8. 8.
    R.P. Cao, J.L. Zhang, W.D. Wang, Z.F. Hu, T. Chen, Y.X. Ye, XGYu. Mater, Res. Bull. 87, 109 (2017)CrossRefGoogle Scholar
  9. 9.
    J.S. Hou, W.Z. Jiang, Y.Z. Fang, F.Q. Huang, J. Mater. Chem. C 1, 5892 (2013)CrossRefGoogle Scholar
  10. 10.
    M.H. Du, J. Mater. Chem. C 2, 2475 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Ding, Y.H. Wang, Phys. Chem. Chem. Phys. 19, 2449 (2017)CrossRefGoogle Scholar
  12. 12.
    G.Q. Wang, X.H. Gong, Y.J. Chen, J.H. Huang, Y.F. Lin, Z.D. Luo, Y.D. Huang, Dalton Trans. 46, 6776 (2017)CrossRefGoogle Scholar
  13. 13.
    R.P. Cao, X. Liu, K.L. Bai, T. Chen, S.L. Guo, Z.F. Hu, F. Xiao, Z.Y. Luo, J. Lumin. 197, 169 (2018)CrossRefGoogle Scholar
  14. 14.
    T.L. Francis, P.P. Rao, S.K. Mahesh, T.S. Sreena, S.P. Babu, Opt. Mater. 52, 134 (2016)CrossRefGoogle Scholar
  15. 15.
    J.H. Oh, Y.J. Eo, H.C. Yoon, Y.D. Huh, Y.R. Do, J. Mater. Chem. C 4, 8326 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.F. Mu, Y.H. Hu, H.Y. Wu, C.J. Fu, F.W. Kang, Phys B 406, 864 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Chen, N. Zhang, C. Guo, F. Pan, X. Zhou, H. Suo, X. Zhao, E.M. Goldys, A.C.S. Appl, Mater. Interfaces 8, 20856 (2016)CrossRefGoogle Scholar
  18. 18.
    S.N. Li, P. Huang, C. Cui, L. Wang, Y. Tian, Q.F. Shi, Appl. Phys. A 123, 271 (2017)CrossRefGoogle Scholar
  19. 19.
    C.H. Huang, T.M. Chen, J. Phys. Chem. C 115, 2349 (2011)CrossRefGoogle Scholar
  20. 20.
    H.S. Jang, Y.H. Won, D.Y. Jeon, Appl. Phys. B 95, 715 (2009)CrossRefGoogle Scholar
  21. 21.
    D. Haranath, H. Chander, P. Sharma, S. Singh, Appl. Phys. Lett. 89, 173118 (2006)CrossRefGoogle Scholar
  22. 22.
    C.C. Lin, R.S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011)CrossRefGoogle Scholar
  23. 23.
    C.C. Zhao, X. Yin, Y.M. Wang, F.Q. Huang, Y. Hang, J. Lumin. 132, 617 (2012)CrossRefGoogle Scholar
  24. 24.
    C.H. Huang, T.W. Kuo, T.M. Chen, A.C.S. Appl, Mater. Interfaces 5, 1395 (2010)CrossRefGoogle Scholar
  25. 25.
    J.S. Hou, W.Z. Jiang, Y.Z. Fang, Y.M. Wang, X. Yin, F.Q. Huang, Ecs. J. Solid State Sci. Technol. 2, 57 (2012)CrossRefGoogle Scholar
  26. 26.
    S.N. Li, P. Huang, C. Cui, L. Wang, Y. Tian, Q.F. Shi, Appl. Phys. A. 123, 271 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.D. Li, S. Qi, P.L. Li, Z.J. Wang, RSC Adv. 7, 38318 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Nyman, L.E. Shea-Rohwer, J.E. Martin, P. Provencio, Chem. Mater. 21, 1536 (2009)CrossRefGoogle Scholar
  29. 29.
    V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 2077 (2009)CrossRefGoogle Scholar
  30. 30.
    P.H. Chuang, C.C. Lin, R.S. Liu, A.C.S. Appl, Mater. Interfaces 6, 15379 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Wang, H.R. Zhang, Y.L. Liu, H.W. Dong, B.F. Lei, M.T. Zheng, Y. Xiao, M.Y. Peng, J. Wang, J. Mater. Chem. C 3, 9572 (2015)CrossRefGoogle Scholar
  32. 32.
    S.X. Li, D.M. Tang, Z.F. Tian, X.J. Liu, T. Takeda, N. Hirosaki, F.F. Xu, Z.R. Huang, R.J. Xie, J. Mater. Chem. C 5, 1042 (2017)CrossRefGoogle Scholar
  33. 33.
    R.L. Nyenge, H.C. Swart, O.M. Ntwaeaborwa, Opt. Mater. 40, 68 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Behrendt, K. Szczodrowski, S. Mahlik, M. Grinberg, Opt. Mater. 36, 1616 (2014)CrossRefGoogle Scholar
  35. 35.
    S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadama, Dalton Trans. 44, 18957 (2015)CrossRefGoogle Scholar
  36. 36.
    N. Abdellaoui, A. Pereira, T. Kandri, E. Drouard, M. Novotny, B. Moinea, A. Pillonnet, J. Mater. Chem. C 4, 9212 (2016)CrossRefGoogle Scholar
  37. 37.
    R.P. Cao, J.L. Zhang, W.D. Wang, Z.F. Hu, T. Chen, Y.X. Ye, X.G. Yu, Mater. Res. Bull. 87, 109 (2017)CrossRefGoogle Scholar
  38. 38.
    J.M. Xiang, J.Y. Chen, N.M. Zhang, H.B. Yao, C.F. Guo, Dyes Pigments 154, 257 (2018)CrossRefGoogle Scholar
  39. 39.
    R.P. Cao, Z.H. Shi, G.J. Quan, T. Chen, S.L. Guo, Z.F. Hu, P. Liu, J. Lumin. 188, 577 (2017)CrossRefGoogle Scholar
  40. 40.
    Z.X. Qiu, T.T. Luo, J.L. Zhang, W.L. Zhou, L.P. Yu, S.X. Lian, J. Lumin. 158, 130 (2015)CrossRefGoogle Scholar
  41. 41.
    S.S. Liang, M.M. Shang, H.Z. Lian, K. Li, Y. Zhang, J. Lin, J. Mater. Chem. C 4, 6409 (2016)CrossRefGoogle Scholar
  42. 42.
    W.J. Yang, L. Luo, T.M. Chen, N.S. Wang, Chem. Mater. 17, 3883 (2005)CrossRefGoogle Scholar
  43. 43.
    G.X. Jiang, B.B. Yang, G.Y. Zhao, Y.F. Liu, J. Zou, H.T. Sun, H.Y. Ou, Y.Z. Fang, J.S. Hou, Opt. Mater. 83, 93 (2018)CrossRefGoogle Scholar
  44. 44.
    W.Q. Shen, Y. Liu, Z. Wang, Mater. Lett. 161, 140 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Huang, Y. Liu, J.B. Yu, Y.W. Zhu, F.J. Pan, T.T. Xuan, M.G. Brik, C.X. Wang, J. Wang, A.C.S. Appl, Mater. Interfaces 10, 18082 (2018)CrossRefGoogle Scholar
  46. 46.
    L. Yang, S. Wang, Y.G. Wang, J. Wang, ChemistrySelect. 4, 3891 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations