Alumina film deposited by spin-coating method for silicon wafer surface passivation

  • Liqi Cao
  • Ning Yang
  • Shizheng Li
  • Xiaojun Ye
  • Xiao Yuan
  • Hongbo LiEmail author
  • Hua TongEmail author


In the present work, alumina gel was developed for passivating silicon wafers. The alumina gel was prepared by sol–gel method with aluminum sec-butoxide as precursor. After coating, rapid thermal process (RTP) was conducted to activate the passivation effect. X-ray photoelectron spectroscopy and C–V curve were executed to evaluate film properties. The peak at 74.35 eV confirmed the formation of Al2O3. Meanwhile, a small peak at low binding energy decreased with the growth of annealing temperature, which was ascribed to the escape of hydrogen, leading to the decline of effective lifetime after 700 °C. The highest fixed charge (Qf) of − 1.16e12 cm−2 and superior interface defect density at mid gap (Dit) of 1.98e12 cm−2eV−1 were obtained at the annealing temperature of 700 °C, contributing to the highest effective minority carrier lifetime of 292 µs. The present work will be helpful to provide a more cost-effective technique for Al2O3 passivation.



This work was supported by the Shanghai Science and Technology Committee Project (Grant No. 2018YFB1500301)


  1. 1.
    L.F. Peña, E.C. Mattson, C.E. Nanayakkara, K.A. Oyekan, Langmuir 34, 2619 (2018)CrossRefGoogle Scholar
  2. 2.
    L.F. Peña, C.E. Nanayakkara, A. Mallikarjunan, H. Chandra, J. Phys. Chem. C 120, 10927 (2016)CrossRefGoogle Scholar
  3. 3.
    L.E. Black, T. Allen, K.R. McIntoshc, A. Cuévas, Energy Procedia 92, 317 (2016)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels, Electrochem. Solid-State Lett. 13(3), 76 (2010)CrossRefGoogle Scholar
  6. 6.
    G. von Gastrowa, S. Li, M. Putkonen, M. Laitinen, Appl. Surf. Sci. 357, 2402 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Li, Y. Bao, M. Laitinen, T. Sajavaara, M. Putkonen, H. Savin, Phys. Status Solidi A 212, 1795 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Huang, J. Lv, Y. Bao, R. Xuan, S. Sun, S. Sneck, Solar Energy Mater. Solar Cells 161, 14 (2017)CrossRefGoogle Scholar
  9. 9.
    C.-X. Hou, X.-H. Zheng, R.J. Tao, S.-J. Liu, S. Jiang, Chin. Phys. B 26, 098103 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Jan Amaru, A. Laades, C. Leendertza, Energy Procedia 55, 845 (2014)CrossRefGoogle Scholar
  11. 11.
    F.-J. Ma, S. Duttagupta, M. Peters, G.S. Samudra, A.G. Aberle, B. Hoex, Energy Procedia 33, 104 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications, 3rd edn. (Kluwer Academic Publishers, Holland, 2005), pp. 155–333Google Scholar
  13. 13.
    M. Qian Feng, Z. Yao, X. Su, Yao, J. Mater. Sci.: Mater. Electron. 29, 16581 (2018)Google Scholar
  14. 14.
    V.V. Vinogradov, A.V. Agafonov, A.V. Vinogradov, T.I. Gulyaeva, J. Sol-Gel. Sci. Technol. 56, 333 (2010)CrossRefGoogle Scholar
  15. 15.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices, 3rd edn. (Wiley, Hoboken, 2007), pp. 223–251Google Scholar
  16. 16.
    E.H. Nicollian, A. Götzberger, Bell Syst. Tech. J. 46, 1055 (1967)CrossRefGoogle Scholar
  17. 17.
    D.K. Schroder, Semiconductor material and device characterisation, 3rd edn. (Arizona, Tempe, 2007), pp. 364–369Google Scholar
  18. 18.
    A. Ronald, Sinton, A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996)CrossRefGoogle Scholar
  19. 19.
    M.R. Alexander, G.E. Thompson, G. Beamson, Surf. Interface Anal. 29, 468 (2000)CrossRefGoogle Scholar
  20. 20.
    T. Gougousi, D. Barua, E.D. Young, G.N. Parsons, Chem. Mater. 17, 5093 (2005)CrossRefGoogle Scholar
  21. 21.
    F. Kerstena, A. Schmidb, S. Bordihna, Energy Procedia. 38, 843 (2013)CrossRefGoogle Scholar
  22. 22.
    C.N. Berglund, IEEE Trans. Electron. Devices 13(10), 701 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations