Advertisement

Study on absorbing wave of Fe3O4/MWCNTs nanoparticles based on large-scale space

  • 15 Accesses

Abstract

Research on electromagnetic stealth technology has always been one of the research hotspots. Combining the advantages of the coating absorbing model (millimeter thickness) and the structural absorbing model, the absorbing model of the nanoparticle distribution in the large-scale space (meter-scale thickness) is established. The smoke cloud clusters are applied by three different scales of 7 kg, 13 kg and 100 kg to produce space filled with Fe3O4/MWCNTs composite nanoparticles with dimensions of 3 m, 5 m and 11 m. The reflectivity R of the electromagnetic wave passing through the nano space is simulated by COMSOL software and compared with the reflectivity R′ calculated by the transmission line model. The results show that the reflectivity of the 3 m space generated by the 7 kg cloud explosion device is below − 10 dB in the 2–10 GHz frequency band, and the lowest value is − 73 dB. In the 5 m space produced by 13 kg cloud explosion device, the reflectivity value in the 2–6 GHz frequency band is below − 10 dB, and the lowest value is − 57 dB. The reflectivity of 11 m space produced by 100 kg cloud explosion device is between − 9.6 and 0 dB.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    R. Yingzheng, Radar Cross Section and Stealth Technology (National Defense Industry Press, Beijing, 1998)

  2. 2.

    Y.Q. Li, H. Zhang, Y.Q. Fu et al., RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas Wirel. Propag. Lett. 7, 473–476 (2008)

  3. 3.

    W. Emerson, Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propag. 21(4), 484–490 (2003)

  4. 4.

    T. Rui, L. Zhao-Hui, B. Guo-Dong et al., Research progress of novel carbon series absorbing coating materials. Surf. Technol. 32, 1–18 (2017)

  5. 5.

    F. Luo, W.C. Zhou, D.L. Zhao, The electric and absorbing wave properties of fibers in structural radar absorbing materials. J. Mater. Eng. 2, 37–40 (2000)

  6. 6.

    Y. Huang, J. Li, T. Ma, Y. Wang, C. Shi, Study on the structural microwave absorbing material made with carbon-felt. Acta Metall. Sin. 17(1), 28–31 (2000)

  7. 7.

    L. Liu, Y. Duan, L. Ma et al., Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl. Surf. Sci. 257(3), 842–846 (2010)

  8. 8.

    M.S. Jang, V.W. Brar, M.C. Sherrott et al., Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys. Rev. B 90(16), 165409 (2014)

  9. 9.

    A. Bastiere, A Decision-Making Aid for Multi-layer Radar Absorbent Coverings. Nasa Sti/recon Technical Report N (1990), p. 90

  10. 10.

    K.D. Groot, R. Geesink, C.P.A.T. Klein et al., Plasma sprayed coatings of hydroxyl apatite. J. Biomed. Mater. Res. 21(12), 1375–1381 (1987)

  11. 11.

    F. Ge, L. Chen, J. Zhu, Reflection characteristics of chiral microwave absorbing coatings. Int. J. Infrared Millim. Waves 17(1), 255–268 (1996)

  12. 12.

    D. Setiadi, Z. He, J. Hajto et al., Application of a conductive polymer to self-absorbing ferroelectric polymer pyroelectric sensors. Infrared Phys. Technol. 40(4), 267–278 (1999)

  13. 13.

    B. Shi, G.U. Wen-Hui, Z. Xiao-Guang, Infrared and radar composite stealth technology. Electro-Optic Technol. Appl. 24(4), 29–31 (2009)

  14. 14.

    Y. He, R. Gong, H. Cao et al., Preparation and microwave absorption properties of metal magnetic micropowder-coated honeycomb sandwich structures. Smart Mater. Struct. 16(5), 1501–1505 (2007)

  15. 15.

    F. Sakran, Y. Neveoz, A. Ron et al., Absorbing frequency-selective-surface for the mm-wave range. IEEE Trans. Antennas Propag. 56(8), 2649–2655 (2008)

  16. 16.

    D.A. Fulghum, Stealth engine advances revealed in JSF designs. Aviat. Week Space Technol. 154(12), 90–93 (2001)

  17. 17.

    D.Y. Kim, Y.C. Chung, Electromagnetic wave absorbing characteristics of Ni-Zn ferrite grid absorber. IEEE Trans. Electromagn. Compat. 39(4), 356–361 (1997)

  18. 18.

    L.K. Neher, Nonreflecting background for testing microwave equipment. U.S. Patent 2656535, 20 Oct 1953

  19. 19.

    C.L. Holloway, R.R. Delyser, R.F. German et al., Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans. Electromagn. Compat. 39(1), 33–47 (1997)

  20. 20.

    D.U. Shiming, Z. Kai, L. Xiangyin et al., Study on extinction mechanism and performance of infrared smoke screen. Electron. Opt. Control 18, 90–94 (2011)

  21. 21.

    L.T. Wang, N. Jiang, M.S. Lv, Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles, in AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology (International Society for Optics and Photonics, 2015)

  22. 22.

    L. Xin, W. Bi-Yi, Research on shielding effect of smoke screen material in terahertz spectrum. Electro-Optic Technol. Appl. 36, 235–254 (2015)

  23. 23.

    B.H. Hou, Y.Y. Wang, J.Z. Guo et al., A scalable strategy to develop advanced anode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@ FeS with superior full-cell performance. ACS Appl. Mater. Interfaces 10(4), 3581–3589 (2018)

  24. 24.

    Z. Hou, P. Yan, B. Sun et al., An excellent soft magnetic Fe/Fe3O4-FeSiAl composite with high permeability and low core loss. Results Phys. 14, 102498 (2019)

  25. 25.

    X. Zhou, C. Zhang, M. Zhang et al., Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Composites A 127, 105627 (2019)

  26. 26.

    X. Chen, Z. Jia, A. Feng et al., Hierarchical Fe3O4@ carbon@ MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interface Sci. 553, 465–474 (2019)

  27. 27.

    G. Wu, Z. Jia, X. Zhou et al., Interlayer controllable of hierarchical MWCNTs@C@ FexOy cross-linked composite with wideband electromagnetic absorption performance. Composites A 128, 105687 (2020)

  28. 28.

    X. Song, X. Li, H. Yan, Study on microwave attenuation mechanism model of Fe3O4/MWCNTs nanocomposites. Mater. Res. Express 6, 125617 (2019)

  29. 29.

    T. Hou, B. Wang, M. Ma et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Composites B 180, 107577 (2020)

  30. 30.

    D. Lan, M. Qin, J. Liu et al., Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020)

  31. 31.

    G. Wu, Y. Cheng, Z. Yang et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

  32. 32.

    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

  33. 33.

    E. Zhang, Lu Tong, L. Tao et al., graphene doped carbon aerogel powder preparation and electromagnetic interference performance. Acta Sin. Sin. 40(3), 1233–1236 (2019)

  34. 34.

    B.D. Fishburn, Some aspects of blast from fuel-air explosives. Acta Astronaut. 3(11–12), 1049–1065 (1976)

  35. 35.

    Q.Y. Hua, Z.T. Qing, S.Z. Wu, Experimental study on unconfined volume explosion effects of low-mass new fuel air explosives. Chin. J. Explos. Propellants 25(3), 7–8 (2002)

  36. 36.

    K. Mcnesby, B. Homan, J. Ritter et al., Afterburn ignition delay and shock augmentation in fuel rich solid explosives. Propellants Explos. Pyrotech. 35(1), 57–65 (2010)

  37. 37.

    G. Liu, F. Hou, B. Cao et al., Experimental study of fuel-air explosive. Combust. Explos. Shock Waves 44(2), 213–217 (2008)

  38. 38.

    J. Chen, Numerical Simulation of Multiphase Fuel Dispersion and Transient Cloud Field (Beijing University of Technology, Chaoyang, 2015)

  39. 39.

    H. Yan, X. Song, X. Wang et al., Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chem. Phys. Lett. 723, 51–56 (2019)

  40. 40.

    X. Song, X. Li, H. Yan, Absorbance analysis of Fe3O4 particles of different scales in silicone rubber at Ku band. Results Phys. 15, 102541 (2019)

  41. 41.

    COMSOL, Multiphysics Finite Element Method and Multiphysical Field Modeling and Analysis (People's Communications Press, Zhongfan Technology Company, Guangzhou, 2007).

  42. 42.

    Y. Honghao, X. Song, Y. Wang, Study on wave absorption properties of carbonyl iron and SiO2 coated carbonyl iron particles. AIP Adv. 8, 065322 (2018)

  43. 43.

    Wu Zhu, H. Dehai, X. Cailu, Carbon Nanotubes (China Machine Press, Beijing, 2005), p. 14

  44. 44.

    Y. Song, X. Honghao, M. Zhengzheng et al., Orthogonal analysis of electromagnetic wave reflection coefficient based on transmission line theory. Sci. Technol. Eng. 445(12), 142–146 (2018)

  45. 45.

    M. Cao, R. Qin, C. Qiu et al., Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Des. 24(5), 391–396 (2003)

  46. 46.

    T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos et al., Microwave behavior of ferrites prepared via sol-gel method. J. Magn. Magn. Mater. 246(3), 360–365 (2002)

  47. 47.

    X. Song, X. Li, H. Yan, Preparation and microwave absorption properties of Fe3O4/MWCNTs/NBR composites. Diamond Relat. Mater. 100, 107573 (2019)

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (Nos. 11672068, and 11672067).

Author information

Correspondence to Honghao Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Li, X. & Yan, H. Study on absorbing wave of Fe3O4/MWCNTs nanoparticles based on large-scale space. J Mater Sci: Mater Electron (2020) doi:10.1007/s10854-019-02806-8

Download citation