Advertisement

Effect of oxygen content on reliability of Au-20Sn solder joints for the chip-level package

  • Liujue Wang
  • Songbai XueEmail author
  • Han Liu
  • Jianhao Wang
Article
  • 18 Downloads

Abstract

In soldering process, oxygen trapped in solder often leads to reliability issues. In order to determine basic mechanisms, five commercial Au-20Sn solder preforms with different oxygen content were studied. The XPS results revealed that the surface oxides on Au-20Sn solder are composed of SnO2 and SnO, and the ratio of soldering area suffered an obvious decline from 95.2 to 69.8% with the oxygen content increase from 16 to 69 ppm. The presence of oxygen will generate two types of voids, microvoids and macrovoids, forming in the solder joints. The shear test indicated that as the ratio of soldering area increased, the shear strength of solder joints continued to increase. During the fracture process, the pores and cracks appeared on the fracture surface when the oxygen content reached 42 ppm. In addition, this paper focus on investigating the aging time effect on defect evolution and shear strength of Au-20Sn solder joints at various oxygen levels. With the extension of aging time, the shear strength of higher oxygen content solder joints decreases more seriously. Considering the microstructure as well as the shear strength of solder joints, the critical oxygen content is preferably less than 28 ppm when Au–20Sn solders are used for fluxless bonding.

Notes

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 51675269), the State Key Laboratory of Advanced Brazing Filler Metals & Technology (Zhengzhou Research Institute of Mechanical Engineering), China (Grant No. SKLABFMT201704), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Durand, M. Klingler, M. Bigerelle, D. Coutellier, Microelectron. Reliab. 66, 122 (2016)CrossRefGoogle Scholar
  3. 3.
    B.S. Lee, Y.H. Ko, J.H. Bang, C.W. Lee, S. Yoo, J.K. Kim, J.W. Yoon, Microelectron. Reliab. 71, 119 (2017)CrossRefGoogle Scholar
  4. 4.
    D. Bušek, K. Dušek, D. Růžička, M. Plaček, P. Mach, J. Urbánek, J. Starý, Microelectron. Reliab. 60, 135 (2016)CrossRefGoogle Scholar
  5. 5.
    V. Verdingovas, M.S. Jellesen, R. Ambat, J. Electron. Mater. 44, 1116 (2015)CrossRefGoogle Scholar
  6. 6.
    D.X. Xu, Y.P. Lei, Z.D. Xia, F. Guo, Y.W. Shi, J. Electron. Mater. 37, 125 (2008)CrossRefGoogle Scholar
  7. 7.
    M.S. Jellesen, D. Minzari, U. Rathinavel, P. Møller, R. Ambat, Eng. Fail. Anal. 17, 1263 (2010)CrossRefGoogle Scholar
  8. 8.
    J.W. Elmer, R.P. Mulay, Scripta Mater. 120, 14 (2016)CrossRefGoogle Scholar
  9. 9.
    G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloys Compd. 476, 138 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Chung, C. Chen, C. Lin, C. Chen et al., J. Alloys Compd. 485, 219 (2009)CrossRefGoogle Scholar
  11. 11.
    J.W. Yoon, H.S. Chun, S.B. Jung, Mater. Sci. Eng. A 473, 119 (2008)CrossRefGoogle Scholar
  12. 12.
    B.S. Lee, C.W. Lee, J.W. Yoon, Surf. Interface. Anal 48, 493 (2016)CrossRefGoogle Scholar
  13. 13.
    P.J. Wang, J.S. Kim, C.C. Lee, J. Electron. Mater. 38, 2106 (2009)CrossRefGoogle Scholar
  14. 14.
    J.A. Taylor, S.M. Merchant, D.L. Perry, J. Appl. Phys. 78, 5356 (1995)CrossRefGoogle Scholar
  15. 15.
    J.F. Kuhmann, A. Preuss, B. Adolphi, K. Maly, T. Wirth, W. Oesterle, W. Pittroff, G. Weyer, M. Fanciulli, IEEE Trans. Compon. Packag. Manuf. Technol. C 21, 134 (1998)CrossRefGoogle Scholar
  16. 16.
    S.S. Zhang, Y. Zhang, H. Wang, J. Alloys Compd. 487, 682 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.T. Lai, C.Y. Liu, J. Electron. Mater. 35, 28 (2006)CrossRefGoogle Scholar
  18. 18.
    L. Wen, S.B. Xue, J.X. Wang, W.M. Long, S.J. Zhong, J. Mater. Sci-Mater. Electron. 30, 9489 (2019)CrossRefGoogle Scholar
  19. 19.
    N. Birks, G.H. Meier, F.S. Pettit, Corrosion. 63, 104 (2007)Google Scholar
  20. 20.
    X. Luo, W. Du, X.Z. Lu, T. Yamaguchi, G. Jackson, L.L. Ye, L.J. Liu, Solder Surf. Mt. Tech. 25, 39 (2013)CrossRefGoogle Scholar
  21. 21.
    T. Farrell, Met. Sci. 10, 87 (1976)CrossRefGoogle Scholar
  22. 22.
    J. Peng, R.C. Wang, M. Wang, H.S. Liu, J. Electron. Mater. 46, 2021 (2017)CrossRefGoogle Scholar
  23. 23.
    J.W. Yoon, H.S. Chun, S.B. Jung, J. Mater. Res. 22, 1219 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Arabi, L. Theolier, D. Martineaub, J.-Y. Deletage, M. Medina, E. Woirgard, Microelectron. Reliab. 64, 409 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations