Advertisement

Tunable white light emission of rare earth ions doped single matrix SrAl2Si2O8 phosphors

  • Cheng Yang
  • Xin Li
  • Quansheng LiuEmail author
  • Guiyou Li
  • Xiyan Zhang
  • Zhaohui Bai
  • Xiaochun Wang
  • Xiaoyun Mi
Article
  • 7 Downloads

Abstract

Aluminosilicate phosphors have been successfully applied in laser technology and fluorescent lamps due to their high luminescence properties and excellent chemical stability. Consequently, research on novel aluminosilicate phosphors has a good application prospect. Rare earth (RE) ions doped SrAl2Si2O8 phosphors were prepared by solid-phase method. Excited at 350 nm, the phosphor doped with Dy3+ ions emits a blue light peaking at 482 nm and an orange light peaking at 575 nm, respectively, and its optimum doping concentration is 0.8 at.%. At the NUV excitation of 377 nm, the phosphor doped with Tb3+ ions shows emission peaks at 489 nm, 544 nm, 585 nm and 623 nm, and the luminescence intensity is the strongest when the content of Tb3+ is 9 at.%. The concentration quenching mechanism of Dy3+ and Tb3+ RE ions is the electric dipole–dipole interaction. For SrAl2Si2O8:Tb3+, Sm3+ phosphors, the energy transfer efficiency is 85.4%, and the mechanism is electric dipole–quadrupole interaction. For SrAl2Si2O8:Dy3+ and SrAl2Si2O8:Tb3+, Sm3+ phosphors, the best CIE coordinates are (0.275, 0.308), (0.316, 0.386). The consequences display that RE ions doped single matrix SrAl2Si2O8 phosphors can achieve effective white light emission and have high application value in white LEDs.

Notes

Acknowledgements

This work was supported by the projects of the National Natural Science foundation of China (Nos. 51602027, 61307118), of the Education Department of Jilin Province (No. JJKH20181094KJ), and of Jilin province development and reform commission (No. 2019C057-1).

References

  1. 1.
    X. Huang, H. Guo, B. Li, J. Alloys Compd. 720, 29–38 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, Z. Sheng, Z. Hao, Z. Xia, G.H. Pan, Y. Luo, H. Wu, J. Zhang, J. Mater. Chem. C. 6, 4967–4976 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Zhou, X. Huang, J. You, B. Wang, H. Chen, Q. Wu, Ceram. Int. 45, 13832–13837 (2019)CrossRefGoogle Scholar
  4. 4.
    L.L. Zhang, J.H. Zhang, X. Zhang, Z.D. Hao, G.H. Pan, H.J. Wu, J. Lumin. 180, 158–162 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Huang, B. Li, H. Guo, D. Chen, Dye. Pigment. 143, 86–94 (2017)CrossRefGoogle Scholar
  6. 6.
    Z.Y. Wang, B.L. Shen, K.H. Yu, Z. Yang, R.L. Zheng, E.T. Hu, J.J. Zheng, W. Wei, J. Alloys Compd. 791, 833–838 (2019)CrossRefGoogle Scholar
  7. 7.
    M. Dalal, S. Chahar, J. Dalal, R. Devi, D. Kumar, S. Devi, V. Taxak, A. Khatkar, M. Kumar, S. Khatkar, Ceram. Int. 44, 10531–10538 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Kai, M. Shang, H. Lian, J. Lin, J. Mater. Chem. C. 4, 5507–5530 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Santra, K. Panigrahi, S. Saha, N. Mazumder, A. Ghosh, S. Bakuli, U.K. Ghorai, J. Mater. Sci. 30, 6311–6321 (2019)Google Scholar
  10. 10.
    Y. Wu, Z. Li, H. Mao, Ceram. Int. 44, 10015–10019 (2018)CrossRefGoogle Scholar
  11. 11.
    B. Samanta, A.K. Dey, P. Bhaumik, S. Manna, A. Halder, D. Jana, U.K. Ghorai, J. Mater. Sci. 30, 1068–1075 (2019)Google Scholar
  12. 12.
    J. Sarkar, S. Mondal, S. Panja, I. Dey, A. Sarkar, U.K. Ghorai, Mater. Res. Bull. 112, 314–322 (2019)CrossRefGoogle Scholar
  13. 13.
    R. Cao, X. Wang, Y. Jiao, X. Ouyang, S. Guo, P. Liu, H. Ao, C. Cao, J. Lumin. 212, 23–28 (2019)CrossRefGoogle Scholar
  14. 14.
    Z. Lu, L. Weng, S. Song, P. Zhang, Q. Hou, X. Ren, J. Sol-Gel. Sci. Technol. 62, 160–169 (2012)CrossRefGoogle Scholar
  15. 15.
    R.E. Rojas-Hernandez, L.F. Santos, M.A. Rui, J. Lumin. 197, 180–186 (2018)CrossRefGoogle Scholar
  16. 16.
    S.H. Kwon, B.K. Moon, B.C. Choi, J.H. Jeong, J.H. Kim, J. Korean Phys. Soc. 68, 363–367 (2016)CrossRefGoogle Scholar
  17. 17.
    A.F. Reid, A.E. Ringwood, J. Solid State Chem. 1, 6–9 (1969)CrossRefGoogle Scholar
  18. 18.
    W. Dai, J. Am. Ceram. Soc. 97, 2531–2538 (2014)CrossRefGoogle Scholar
  19. 19.
    C. Jian, Y. Liu, H. Liu, D. Hao, M. Fang, Z. Huang, Opt. Mater. 42, 80–86 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Ma, Y. Bo, S. Ye, K. Zheng, Y. Wang, C. Xu, H. Zou, Y. Song, J. Alloys Compd. 714, 627–635 (2017)CrossRefGoogle Scholar
  21. 21.
    Z. He, X.Y. Sun, J.X. Teng, X. Gu, J. Mater. Sci. 29, 1–5 (2018)Google Scholar
  22. 22.
    R. Rüdel, F. Ziteferenczy, J. Physiol. 290, 317–330 (1979)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, M. Xie, X. Min, Z. Huang, Y.g. Liu, X. Wu, M. Fang, Chem. Phys. Lett. 727, 72–77 (2019)CrossRefGoogle Scholar
  24. 24.
    C. Yue, S. Liu, D. Zhu, J. Alloys Compd. 783, 19–27 (2019)CrossRefGoogle Scholar
  25. 25.
    C. Yang, Q. Liu, D. Huang, X. Li, X. Zhang, Z. Bai, X. Wang, J. Mater. Sci. 30, 5544–5554 (2019)Google Scholar
  26. 26.
    H. Chen, Y. Wang, Inorg. Chem. 58, 7440–7452 (2019)CrossRefGoogle Scholar
  27. 27.
    D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar
  28. 28.
    G.S. Ofelt, J. Chem. Phys. 38, 2171–2180 (1963)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, W. Gong, G. Ning, New J. Chem. 40, 10136–10143 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Zhong, S. Zhou, D. Chen, J. Li, Z. Ji, Dalton Trans. 47, 8248–8256 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, Q. Liu, X. Du, J. Mater. Sci. 52, 1156–1164 (2017)CrossRefGoogle Scholar
  32. 32.
    C. Yang, Q. Liu, D. Huang, X. Li, X. Zhang, Z. Bai, X. Wang, X. Mi, J. Lumin. 214, 116541 (2019)CrossRefGoogle Scholar
  33. 33.
    G. Blasse, Phys. Lett. A 28, 444–445 (1968)CrossRefGoogle Scholar
  34. 34.
    H. You, J. Zhang, G. Hong, H. Zhang, J. Phys. Chem. C 111, 10657–10661 (2007)CrossRefGoogle Scholar
  35. 35.
    M. Que, Z. Ci, Y. Wang, G. Zhu, S. Xin, Y. Shi, Q. Wang, CrystEngComm 15, 6389–6394 (2013)CrossRefGoogle Scholar
  36. 36.
    R. Reisfeld, E. Greenberg, R. Velapoldi, B. Barnett, J. Chem. Phys. 56, 1698–1705 (1972)CrossRefGoogle Scholar
  37. 37.
    J. Zhao, S.X. Huang, D. Zhao, J. Chen, Y. Tian, Q. Zong, Y.C. Fan, C.K. Nie, B.Z. Liu, Optik 161, 342–347 (2018)CrossRefGoogle Scholar
  38. 38.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, V.V. Atuchin, J. Alloys Compd. 713, 156–163 (2017)CrossRefGoogle Scholar
  39. 39.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, D.A. Ikonnikov, V.V. Atuchin, Dalton Trans. 45, 15541–15551 (2016)CrossRefGoogle Scholar
  40. 40.
    X. Zhang, L. Zhou, Q. Pang, J. Shi, M. Gong, J. Phys. Chem. C 118, 7591–7598 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.Changchun Coal Science Research InstituteChangchunChina

Personalised recommendations