Advertisement

Dark and illuminated electrical characteristics of Si-based photodiode interlayered with CuCo5S8 nanocrystals

  • D. E. YildizEmail author
  • H. H. Gullu
  • A. Sarilmaz
  • F. Ozel
  • A. Kocyigit
  • M. Yildirim
Article
  • 52 Downloads

Abstract

Derived from the traditional dichalcogenide CuS structure, ternary transition metal chalcogenide nanoparticles in the form of CuCo5S8 are investigated under the aim of photodiode application. In addition to the detailed analysis on material characteristics of CuCo5S8 thin-film layer, the work is focused on the electrical characteristics of Au/CuCo5S8/Si diode to investigate its current–voltage, capacitance–voltage, and conductance–voltage characteristics under dark and illuminated conditions. CuCo5S8 nanocrystals with an average size of 5 nm are obtained using hot-injection method, and they are used to form thin-film interfacial layer between metal (Au) and semiconductor (Si). Under dark conditions, the diodes show about four orders in magnitude rectification rate and diode illumination results in efficient rectification with increase in intensity. The analysis of current–voltage curve results in non-ideal diode characteristics according to the thermionic emission model due to the existence of series resistances and interface states with interface layer. The measured current–voltage values are used to extract the main diode parameters under dark and illumination conditions. Under illumination, photogenerated carriers contribute to the current flow and linear photoconductivity behavior in photocurrent measurements with illumination shows the possible use of CuCo5S8 layer in Si-based photodiodes. This characteristic is also observed from the typical on/off illumination switching behavior for the photodiodes in transient photocurrent, photocapacitance, and photoconductance measurements with a quick response to the illumination. The deviations from ideality are also discussed by means of distribution of interface states and series resistance depending on the applied frequency and bias voltage.

Notes

Acknowledgment

This study was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under Project Number 217M212.

References

  1. 1.
    R. Scheer, H.W. Schock, Chalcogenide photovoltaics: Physics, technologies, and thin film devices (Wiley, Singapore, 2011)CrossRefGoogle Scholar
  2. 2.
    G.K. Ahluwalia, Applications of Chalcogenides: S, Se and Te (Springer, Berlin, 2017)CrossRefGoogle Scholar
  3. 3.
    S.R. Kodigala, Thin Film Solar Cells from Earth Abundant Materials: Growth and Characterization of Cu 2(ZnSn)(SSe) 4Thin Films and Their Solar Cells (Elsevier, Amsterdam, 2014)Google Scholar
  4. 4.
    H. Matsushita, Y. Tojo, T. Takizawa, J. Phys. Chem. Solids 64, 1825 (2003)CrossRefGoogle Scholar
  5. 5.
    H.H. Gullu, M. Parlak, J. Electron. Mater. 48, 3096 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Wada, S. Nakamura, T. Maeda, Prog. Photovolt Res. Appl. 20, 520 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Terlemezoglu, O. Bayrakli, H.H. Gullu, T. Colakoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci.: Mater. Electron. 29, 5264 (2018)Google Scholar
  8. 8.
    H.H. Gullu, D.E. Yildiz, O. Bayrakli Surucu, M. Terlemezoglu, M. Parlak, Bull. Mater. Sci. 42, 45 (2019)CrossRefGoogle Scholar
  9. 9.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  10. 10.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Oxford University Press, London, 1988)Google Scholar
  11. 11.
    F. Yigiterol, H.H. Gullu, O. Bayrakli, D.E. Yildiz, J. Electron. Mater. 47, 2979 (2018)CrossRefGoogle Scholar
  12. 12.
    O. Bayrakli Surucu, H.H. Gullu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, Physica B 570, 246 (2019)CrossRefGoogle Scholar
  13. 13.
    A. Tataroglu, Chin. Phys. B 22, 068402 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Altuntas, A. Bengi, T. Asar, U. Aydemir, B. Sarikavak, Y. Ozen, S. Altindal, S. Ozcelik, Surf. Interface Anal. 42, 1257 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Yildirim, M. Gokcen, Mater. Sci. Semicond. Proc. 15, 406 (2012)CrossRefGoogle Scholar
  16. 16.
    T. Ataseven, A. Tataroglu, Chin. Phys. B 22, 117310 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Altindal, O. Sevgili, Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 30, 9273 (2019)Google Scholar
  18. 18.
    I. Orak, A. Kocyigit, I. Karteri, S. Urus, J. Mater. Electron. 47, 6691 (2018)CrossRefGoogle Scholar
  19. 19.
    X. Huang, G. Deng, L. Liao, W. Zhang, G. Guan, F. Zhou, Z. Xiao, R. Zou, Q. Wang, J. Hu, Nanoscale 16, 2626 (2019)Google Scholar
  20. 20.
    B. Li, F. Yuan, G. He, X. Han, X. Wang, J. Qin, Z.X. Guo, X. Lu, Q. Wang, I.P. Parkin, C. Wu, Adv. Funct. Mater. 27, 1606218 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Coughan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, K.M. Ryan, Chem. Rev. 117, 5865 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Aldakov, A. Lefrancois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Fu, S.W. Tsang, Nanoscale 4, 2187 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Kagkoura, T. Skaltsas, N. Tagmatarchis, Chem. Eur. J. 23, 12967 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Chen, H. Chen, H. Zhu, Q. Gao, J. Luo, Y. Wang, S. Zhang, K. Zhang, C. Wang, Y. Xiong, Y. Wu, X. Zheng, W. Chu, L. Song, Z. Wu, Small 10, 4637 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Zheng, L. Sun, T. Yin, A.M. Dubrovkin, F. Liu, Z. Liu, Z.X. Shen, H.J. Fan, Appl. Phys. Lett. 106, 063113 (2015)CrossRefGoogle Scholar
  27. 27.
    L. Reijnen, B. Meester, A. Goossens, J. Schoonman, Mater. Sci. Eng. C 19, 311 (2002)CrossRefGoogle Scholar
  28. 28.
    A.M. Wiltrout, C.G. Read, E.M. Spencer, R.E. Schaak, Inorg. Chem. 55, 221 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Kocyigit, M. Yildirim, A. Sarilmaz, F. Ozel, J. Alloy Compd. 780, 186 (2019)CrossRefGoogle Scholar
  30. 30.
    M. Yıldırım, A. Sarılmaz, F. Ozel, J. Mater. Sci.: Mater. Electron. 29, 762 (2018)Google Scholar
  31. 31.
    I. Bezverkhyy, M. Danot, P. Afanasiev, Inorg. Chem. 42, 1764 (2003)CrossRefGoogle Scholar
  32. 32.
    C.J. Crossland, P.J. Hickey, J.O.S. Evans, J. Mater. Chem. 15, 3452 (2005)CrossRefGoogle Scholar
  33. 33.
    M. Chauhan, K. Soni, P.E. Karthik, K.P. Reddy, C.S. Gopinath, S. Deka, J. Mater. Chem. A, Advance Article. (2019). https://doi.org/10.1039/C9TA09896HCrossRefGoogle Scholar
  34. 34.
    J. Tang, Y. Ge, J. Shen, M. Ye, Chem. Commun. 52, 1509 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Xu, Y. Liu, P. Dong, P.M. Ajayan, J. Shen, M. Ye, J. Power Sources 400, 96 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Roth, Vacuum Technology (North Holland, Amsterdam, 1980)Google Scholar
  37. 37.
    A. Kocyigit, I. Karteri, I. Orak, S. Urus, M. Caylar, Physica E 103, 452 (2018)CrossRefGoogle Scholar
  38. 38.
    F. Aslan, H. Esen, F. Yakuphanoglu, J. Alloy Compd. 789, 595 (2019)CrossRefGoogle Scholar
  39. 39.
    M. Yalcin, D. Ozmen, F. Yakuphanoglu, J. Alloy Compd. 796, 243 (2019)CrossRefGoogle Scholar
  40. 40.
    M.M. Makhlouf, M.M. el-Nahass, M.H. Zeyada, Mater. Sci. Semicond. Proc. 58, 68 (2017)CrossRefGoogle Scholar
  41. 41.
    C. Oruc, A. Altindal, Appl. Phys. A 124, 81 (2018)CrossRefGoogle Scholar
  42. 42.
    N.N. Halder, P. Biswas, S. Kundu, P. Banerji, Sol. Energy Mater. Sol. C 132, 230 (2015)CrossRefGoogle Scholar
  43. 43.
    B.L. Sharma, Metal-Semicodncutor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  44. 44.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  45. 45.
    C. Nuhoglu, Y. Gulen, Vacuum 84, 812 (2010)CrossRefGoogle Scholar
  46. 46.
    O.F. Yuksel, N. Tugluoglu, H. Safak, M. Kus, J. Appl. Phys. 113, 044507 (2013)CrossRefGoogle Scholar
  47. 47.
    H.H. Gullu, O. Bayrakli, D.E. Yildiz, M. Parlak, J. Mater. Sci.: Mater. Electron. 28, 17806 (2017)Google Scholar
  48. 48.
    B.L. Smith, E.H. Rhoderic, Solid State Electron. 14, 71 (1971)CrossRefGoogle Scholar
  49. 49.
    X. Zhang, D. Joy, Microsc. Res. Technol. 29, 47 (1994)CrossRefGoogle Scholar
  50. 50.
    F. Yakuphanoglu, Synth. Met. 157, 859 (2007)CrossRefGoogle Scholar
  51. 51.
    O.F. Yuksel, N. Tugluoglu, B. Gulveren, H. Safak, M. Kus, J. Alloy Compd. 577, 30 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid State Electron. 51, 941 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Tataroglu, S. Altindal, J. Alloy Compd. 479, 893 (2009)CrossRefGoogle Scholar
  54. 54.
    H.H. Gullu, O. Bayrakli Surucu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci.: Mater. Electron. 30, 15371 (2019)Google Scholar
  55. 55.
    A. Tataroglu, F.Z. Pur, Phys. Scr. 88, 015801 (2013)CrossRefGoogle Scholar
  56. 56.
    A. Karabulut, A. Dere, A.G. El-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Electron. Mater. 47, 7159 (2018)CrossRefGoogle Scholar
  57. 57.
    S.K. Cheung, N.W. Cheungics, Solid State Electron. 49, 85 (1986)Google Scholar
  58. 58.
    H. Norde, J. Appl. Phys. 50, 5052 (1979)CrossRefGoogle Scholar
  59. 59.
    K. Sato, Yasumura, J. Appl. Phys. 58, 3655 (1985)CrossRefGoogle Scholar
  60. 60.
    F. Yakuphanoglu, Sens. Actuators A 141, 383 (2008)CrossRefGoogle Scholar
  61. 61.
    A. Tataroglu, C. Ahmedova, G. Barim, A.G. Al-Sehemi, A. Karabulut, A.A. Al-Ghamdi, W.A. Farooq, F. Yakuphanoglu, J. Mater. Sci.: Mater. Electron. 29, 12561 (2018)Google Scholar
  62. 62.
    F. Yakuphanoglu, Composites B 92, 151 (2016)CrossRefGoogle Scholar
  63. 63.
    M. Cavas, A.A.M. Farag, Z.A. Alahmed, F. Yakuphanouglu, Electroceramics 31, 298 (2013)CrossRefGoogle Scholar
  64. 64.
    A.S. Dahlan, A. Tataroglu, A.L. Al-Ghamdi, A.A. Al-Ghamdi, S. Bin-Omran, Y. Al-Turki El-Tantawy, F. Yakuphanoglu, J. Alloy Compd. 646, 1151 (2015)CrossRefGoogle Scholar
  65. 65.
    A. Dere, M. Soylu, F. Yakuphanoglu, Mater. Sci. Semicond. Proc. 90, 129 (2019)CrossRefGoogle Scholar
  66. 66.
    P. Chattorpadhyay, Solid State Electron. 36, 605 (1993)CrossRefGoogle Scholar
  67. 67.
    H.H. Gullu, O. Bayrakli Surucu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci: Mater. Electron. 30, 9814 (2019)Google Scholar
  68. 68.
    G. Ersoz, I. Yucedag, Y.A. Kalandaragh, I. Orak, S. Altindal, Trans. Electron Dev. 63, 2948 (2016)CrossRefGoogle Scholar
  69. 69.
    H. Tecimer, S.O. Tan, S. Altindal, IEEE Trans. Electron. Dev. 65, 231 (2018)CrossRefGoogle Scholar
  70. 70.
    I. Tascioglu, S.O. Tan, S. Altindal, J. Mater. Sci.: Mater. Electron. 30, 11536 (2019)Google Scholar
  71. 71.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide–Semiconductor) Physics and Technology (Wiley, New York, 1982)Google Scholar
  72. 72.
    H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)CrossRefGoogle Scholar
  73. 73.
    D.E. Yildiz, S. Altindal, Microelectron. Eng. 85, 289 (2008)CrossRefGoogle Scholar
  74. 74.
    Z. Guo, F. Ambrosio, A. Pasquarello, Appl. Phys. Lett. 109, 062903 (2016)CrossRefGoogle Scholar
  75. 75.
    W.A. Hill, C.C. Coleman, Solid State Electron. 23, 87 (1980)CrossRefGoogle Scholar
  76. 76.
    S. Aydin, D.E. Yildiz, H. Kanbur Cavus, R. Sahingoz, Bull. Mater. Sci. 37, 1563 (2014)CrossRefGoogle Scholar
  77. 77.
    R. Castagne, A. Vapaille, Electron. Lett. 6, 691 (1970)CrossRefGoogle Scholar
  78. 78.
    N. Tugluoglu, F. Yakuphanoglu, S. Karadeniz, Phys. B 393, 56 (2007)CrossRefGoogle Scholar
  79. 79.
    J.R. Brews, E.H. Nicollian, Solid State Electron. 27, 963 (1984)CrossRefGoogle Scholar
  80. 80.
    J. Werner, K.H. Ploog, H.J. Queisser, Phys. Rev. Lett. 57, 80 (1986)Google Scholar
  81. 81.
    M.M. Bulbul, S. Altindal, F. Parlakturk, A. Tataroglu, Surf. Interface Anal. 43, 1561 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHitit UniversityCorumTurkey
  2. 2.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey
  3. 3.Department of Metallurgical and Materials EngineeringKaramanoglu Mehmetbey UniversityKaramanTurkey
  4. 4.Scientific and Technological Research & Application CenterKaramanoglu Mehmetbey UniversityKaramanTurkey
  5. 5.Department of Electrical and Electronics EngineeringIgdir UniversityIgdirTurkey
  6. 6.Department of BiotechnologySelcuk UniversityKonyaTurkey

Personalised recommendations