Enhanced low-level acetone detection by zinc/tin bi-metallic oxides nanocomposite with long-term stability

  • Mohammad Asal
  • Shahruz NasirianEmail author


Zinc/tin bi-metallic oxides nanocomposites (ZTNs) were fabricated by a simple hydrothermal process. The characterization of the ZTNs by X-ray diffraction (XRD), field effect scanning electron microscopy (FESEM), and Brunauer–Emmett–Teller (BET) confirmed the formation of a mixture of the ZnO and SnO2 crystallites in porous nanocomposite with nanosheet morphology. Acetone gas-sensing features of the ZTN sensor (ZTS) were studied at different operating temperatures as a function of low gas concentration from 0.5 to 10 ppm. The ZTS responses were 54.4, 42.3, and 30% toward 10, 2, and 0.5 ppm acetone concentration, respectively, at an optimum operating temperature of 110 °C. Our low-cost device showed the appropriate ability for the acetone gas detection at low level with attractive stability and selectivity, which suggests it as a reliable biomarker sensor in health monitoring. The acetone gas-sensing mechanism of the sensor was analyzed and discussed as well, through the standard thermionic emission model and the gas molecules adsorption/desorption process.


Supplementary material

10854_2019_2601_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (DOCX 69 kb)


  1. 1.
    L. Li, J. Tan, M. Dun, X. Huang, Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators B 248, 85–91 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Park, Acetone gas detection using TiO2 nanoparticles functionalized In2O3 nanowires for diagnosis of diabetes. J. Alloy. Compd. 696, 655–662 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Chen, H. Qin, X. Wang, L. Li, J. Hu, Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sens. Actuators B 235, 56–66 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, Ch. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, G. Lu, Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens. Actuators B 256, 861–869 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Xing, L. Xu, J. Song, C. Zhou, Q. Li, D. Liu, H.W. Song, Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath. Sci. Rep. 5(10717), 1–14 (2015)Google Scholar
  6. 6.
    S. Wei, G. Zhao, W. Du, Q. Tian, Synthesis and excellent acetone sensing properties of porous WO3 nanofibers. Vacuum 124, 32–39 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Narjinary, P. Rana, A. Sen, M. Pal, Enhanced and selective acetone sensing properties of SnO2-MWCNT nanocomposites: promising materials for diabetes sensor. Mater. Des. 115, 158–164 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Salehi, E. Nikan, A.A. Khodadadi, Y. Mortazavi, Highly sensitive carbon nanotubes-SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath. Sens. Actuators B 205, 261–267 (2014)CrossRefGoogle Scholar
  10. 10.
    H.J. Choi, S.J. Choi, S. Choo, I.D. Kim, H. Lee, Hierarchical ZnO nanowires-loaded Sb-doped SnO2-ZnO micro grating pattern via direct imprinting-assisted hydrothermal growth and its selective detection of acetone molecules. Sci. Rep. 6, 18731 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Kalidoss, S. Umapathy, Y. Sivalingam, An investigation of GO-SnO2-TiO2 ternary nanocomposite for the detection of acetone in diabetes mellitus patient’s breath. Appl. Surf. Sci. 449, 677–684 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, M. Xu, L. Liu, X. Ruan, J. Yan, W. Zhao, J. Yun, Y. Wang, S. Qin, T. Zhang, Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens. Actuators B 257, 714–727 (2018)CrossRefGoogle Scholar
  13. 13.
    I. Lee, S.J. Choi, K.M. Park, S.S. Lee, S. Choi, I.D. Kim, C.O. Park, The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens. Actuators B 197, 300–307 (2014)CrossRefGoogle Scholar
  14. 14.
    P.M. Perillo, Flexible gas sensor based on TiO2 membrane nanotubes for detection of butylamine. Mater. Today. Commun. 7, 117–121 (2016)CrossRefGoogle Scholar
  15. 15.
    T.V.K. Karthik, L. Martinez, V. Agarwal, Porous silicon ZnO/SnO2 structures for CO2 detection. J. Alloy. Compd. 731, 853–863 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Deshwal, A. Arora, Enhanced acetone detection using Au doped ZnO thin film sensor. J. Mater. Sci. Mater. Electron. 29(18), 15315–15320 (2018)CrossRefGoogle Scholar
  17. 17.
    P. Rajeshwaran, A. Sivarajan, Influence of Mn doping on structural, optical and acetone gas sensing properties of SnO2 nanoparticles by a novel microwave technique. J. Mater. Sci. Mater. Electron. 26(1), 539–546 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Jiang, L. Shi, T. Xie, D. Wang, Y. Lin, Study on the gas-sensitive properties for formaldehyde based on SnO2–ZnO heterostructure in UV excitation. Sens. Actuators B 254, 863–871 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Meng, N. Hou, Z. Jin, B. Sun, W. Li, X. Xiao, C. Wang, M. Li, J. Liu, Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B 219, 209–217 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Wei, S. Wang, Y. Zhang, M. Zhou, Different morphologies of ZnO and their ethanol sensing property. Sens. Actuators B 192, 480–487 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Janotti, G. Van, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 1–29 (2009)CrossRefGoogle Scholar
  22. 22.
    X. Yang, S. Zhang, Q. Yu, L. Zhao, P. Sun, T. Wang, F. Liu, X. Yan, Y. Gao, X. Liang, S. Zhang, G. Lu, One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties. Sens. Actuators B. 281, 415–423 (2019)CrossRefGoogle Scholar
  23. 23.
    X. Song, Z. Wang, Y. Liu, C. Wang, L. Li, A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers. Nanotechnology. 20, 1–5 (2009)Google Scholar
  24. 24.
    M. Asgaria, F.H. Saboor, Y. Mortazavia, A. Khodadad, SnO2 decorated SiO2 chemical sensors: enhanced sensing performance toward ethanol and acetone. Mater. Sci. Semicond. Proc 68, 87–96 (2017)CrossRefGoogle Scholar
  25. 25.
    T.I. Nasution, I. Nainggolan, S.D. Hutagalung, K.R. Ahmad, Z.A. Ahmad, The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sens. Actuators B. 177, 522–528 (2013)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, B. Dong, L. Xu, X. Zhang, J. Chen, X. Sun, H. Xu, T. Hang, X. Bai, Sh Zhang, H. Song, Three-dimensional ordered ZnO–Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sens. Actuators B. 252, 367–374 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Luo, S.Y. Ma, F.M. Li, X.B. Li, W.Q. Li, L. Cheng, Y.Z. Mao, D.J. Gz, The mesoscopic structure of flower-like ZnO nanorods for acetone detection. Mater. Lett. 121, 137–140 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Qin, J. Xu, X. Dong, Q. Pan, Z. Cheng, Q. Xiang, F. Li, The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19, 1–8 (2008)Google Scholar
  29. 29.
    W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S.H. Yan, Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett. 132, 338–341 (2014)CrossRefGoogle Scholar
  30. 30.
    S.H. Yan, S.Y. Ma, X.L. Xu, W.Q. Li, J. Luo, W.X. Jin, T.T. Wang, X.H. Jiang, Y. Lu, H.S. Song, Preparation of SnO2–ZnO hetero-nanofibers and their application in acetone sensing performance. Mater. Lett. 159, 447–450 (2015)CrossRefGoogle Scholar
  31. 31.
    S.H. Yan, S.Y. Ma, W.Q. Li, X.L. Xu, L. Cheng, H.S. Song, X.Y. Liang, Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sens. Actuators B 221, 88–95 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Xie, R. Xing, Q. Li, L. Xu, H. Song, Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing. Sens. Actuators B 211, 255–262 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Yin, Y. Yao, H. Fan, Sh Liu, WO3–SnO2 nanosheet composites: hydrothermal synthesis and gas sensing mechanism. J. Alloy. Compd. 736, 322–331 (2018)CrossRefGoogle Scholar
  34. 34.
    H. Gong, C. Zhao, F. Wang, On-chip growth of SnO2/ZnO core-shell nanosheet arrays for ethanol detection. IEEE. Electron Dev. Lett. 39, 1065–1068 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Liu, T. Wang, B. Wang, P. Sun, Q. Yang, X. Liang, H. Song, G. Lu, Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sens. Actuators B 245, 551–559 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B 162, 237–243 (2012)CrossRefGoogle Scholar
  37. 37.
    S.W. Choi, A. Katoch, G.J. Sun, S.S. Kim, Synthesis and gas sensing performance of ZnO–SnO2 nanofiber-nanowire stem-branch heterostructure. Sens. Actuators B 181, 787–794 (2013)CrossRefGoogle Scholar
  38. 38.
    X. Lian, Y. Li, X. Tong, Y. Zou, X. Liu, D. An, Q. Wang, Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties. Appl. Surf. Sci. 407, 447–455 (2017)CrossRefGoogle Scholar
  39. 39.
    X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, Q. Chen, Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J. Alloy. Compd. 703, 572–579 (2017)CrossRefGoogle Scholar
  40. 40.
    J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. J. Alloy. Compd. 575, 115–122 (2013)CrossRefGoogle Scholar
  41. 41.
    W. Li, Sh Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu, S. Yan, Enhanced ethanol sensing performance of hollow ZnO–SnO2 core-shell nanofibers. Sens. Actuators B 211, 392–402 (2015)CrossRefGoogle Scholar
  42. 42.
    C. Amorim, E. Bernardo, E. Leite, A. Chiquito, Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device. Semicond. Sci. Technol. 33, 1–7 (2018)CrossRefGoogle Scholar
  43. 43.
    D. Somvanshi, S. Jit, Mean barrier height and richardson constant for Pd/ZnO thin film-based Schottky diodes grown on n-Si substrates by thermal evaporation method. IEEE. Electron Dev. Lett. 34(10), 1238–1240 (2013)CrossRefGoogle Scholar
  44. 44.
    G. Rawat, H. Kumar, Y. Kumar, C. Kumar, D. Somvanshi, S. Jit, Effective Richardson constant of sol-gel derived TiO2 films in n-TiO2/p-Si heterojunctions. IEEE. Electron Dev. Lett. 38(5), 633–636 (2017)CrossRefGoogle Scholar
  45. 45.
    D. Korucu, T.S. Mammadov, Temperature-dependent current-conduction mechanisms in Au/n-InP Schottky barrier diodes (SBDs). J. Optoelectron. Adv. Mater. 14(1), 41–48 (2012)Google Scholar
  46. 46.
    Y. Chen, H. Qin, Y. Cao, H. Zhang, J. Hu, Acetone sensing properties and mechanism of SnO2 thick-films. Sensors. 18(3425), 1–17 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Medical EngineeringMazandaran University of Science and TechnologyBabolIran

Personalised recommendations