NO2 gas sensing properties of Pd/WO3 films prepared by glancing angle deposition

  • Hao LiuEmail author
  • Yaohua Xu
  • Xiao Zhang
  • Wenrui Zhao
  • Anjie Ming
  • Feng Wei


The fabrication procedure of gas sensing films deposited by physical vapor deposition is more compatible with the micro-electro-mechanical system (MEMS) process. However, low sensitivity and high working temperature of gas sensing films limit their application. In this work, tungsten trioxide (WO3) films were deposited on silicon oxide by glancing angle deposition (GLAD), and palladium (Pd) was deposited onto the WO3 layer. Then, the morphology, structure, and nitrogen dioxide (NO2) gas sensing properties of the Pd/WO3 films were studied. The results show that the Pd/WO3 films may comprise discrete Pd islands and columnar WO3 nanorods. The nanostructure can detect 0.5 ppm NO2 at 150 °C with a sensitivity of 1.85 and possesses good selectivity, which can be mainly attributed to large specific surface area of nanorods, catalysis of Pd, and Schottky barrier between Pd and WO3. Therefore, the Pd/WO3 nanostructure prepared by GLAD has great potential in the field of NO2 MEMS sensors.



  1. 1.
    S. Neethirajan, D.S. Jayas, S. Sadistap, Food Bioprocess Tech. 2, 115–121 (2009)CrossRefGoogle Scholar
  2. 2.
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469–5502 (2010)CrossRefGoogle Scholar
  3. 3.
    G.W. Hunter, J.C. Xu, A.M. Biaggi-Labiosa, D. Laskowski, P.K. Dutta, S.P. Mondal, B.J. Ward, D.B. Makel, C.C. Liu, C.W. Chang, R.A. Dweik, J. Breath Res. 5, 03711 (2011)CrossRefGoogle Scholar
  4. 4.
    S.E. Moon, N.J. Choi, H.K. Lee, J. Lee, W.S. Yang, Etri J. 35, 617–624 (2013)CrossRefGoogle Scholar
  5. 5.
    Q.P. Zhang, C.X. Chen, Y.T. Liu, H. Pan, H.F. Du, Y.J. Su, H.L. Tai, G.Z. Xie, M. Xu, X.S. Du, J. Mater. Sci. 30, 11395–11403 (2019)Google Scholar
  6. 6.
    O.H. Lee, W.J. Tseng, J. Mater. Sci. (2019). CrossRefGoogle Scholar
  7. 7.
    M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J.J. Pireaux, X. Correig, Sens. Actuators B 105, 271–277 (2005)CrossRefGoogle Scholar
  8. 8.
    N. Yamazoe, K. Shimanoe, Sens. Actuators B 138, 100–107 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Lin, Y. Chen, R.T. Burnett, P.J. Villeneuve, D. Krewski, J. Epidemiol. Commun. Health 57, 50–55 (2003)CrossRefGoogle Scholar
  10. 10.
    H.J. Zhang, R.F. Wu, Z.W. Chen, G. Liu, Z.N. Zhang, Z. Jiao, CrystEngComm 14, 1775–1782 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Guo, J. Zhang, H.B. Gong, D.X. Ju, B.Q. Cao, Sens. Actuators B 226, 266–272 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Wang, X. Li, C. Feng, Y. Sun, G. Lu, Sens. Actuators B 210, 75–81 (2015)CrossRefGoogle Scholar
  13. 13.
    S.L. Bai, D.Q. Li, D.M. Han, R.X. Luo, A.F. Chen, C.L. Chung, Sens. Actuators B 150, 749–755 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.B. Shen, X.X. Chen, W. Wang, Y. Gong, S.H. Chen, J.T. Liu, D.Z. Wei, M. Dan, X.G. San, Mater. Lett. 163, 150–153 (2016)CrossRefGoogle Scholar
  15. 15.
    B.X. Xiao, D.X. Wang, F. Wang, Q. Zhao, C.B. Zhai, M.Z. Zhang, Ceram. Int. 43, 8183–8189 (2017)CrossRefGoogle Scholar
  16. 16.
    Q.Q. Jia, H.M. Ji, B. Xue, J. Mater. Sci. 30, 7824–7833 (2019)Google Scholar
  17. 17.
    H.W. Long, W. Zeng, H. Zhang, J. Mater. Sci. 26, 4698–4707 (2015)Google Scholar
  18. 18.
    T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, E. Filippo, Sens. Actuators B 133, 321–326 (2008)CrossRefGoogle Scholar
  19. 19.
    C.M. White, D.T. Gillaspie, E. Whitney, S.-H. Lee, A.C. Dillon, Thin Solid Films 517, 3596–3599 (2009)CrossRefGoogle Scholar
  20. 20.
    Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Chem. Phys. Lett. 367, 214–218 (2003)CrossRefGoogle Scholar
  21. 21.
    J. Liu, F.T. Yi, J. Mater. Sci. 30, 11404–11411 (2019)Google Scholar
  22. 22.
    Y.P. Zhao, D.X. Ye, G.C. Wang, T.M. Lu, Proc. SPIE 5219, 59–73 (2003)CrossRefGoogle Scholar
  23. 23.
    A. Ghosh, P. Murkute, R. Lahiri, S. Chakrabarti, K.K. Chattopadhyay, A. Mondal, J. Mater. Sci. 30, 12739–12752 (2019)Google Scholar
  24. 24.
    D. Deniz, D.J. Frankel, R.J. Lad, Thin Solid Films 518, 4095–4099 (2010)CrossRefGoogle Scholar
  25. 25.
    D. Deniz, R.J. Lad, J. Vac. Sci. Technol., A 29, 011020 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Horprathum, K. Limwichean, A. Wisitsoraat, P. Eiamchai, K. Aiempanakit, P. Limnonthakul, N. Nuntawong, V. Pattantsetakul, A. Tuantranont, P. Chindaudom, Sens. Actuators B 176, 685–691 (2013)CrossRefGoogle Scholar
  27. 27.
    H.G. Moon, S.D. Han, M.G. Kang, W.S. Jung, B. Kwon, C. Kim, T. Lee, S. Lee, S.H. Baek, J.S. Kim, H.H. Park, C.Y. Kang, Sens. Actuators B 229, 92–99 (2016)CrossRefGoogle Scholar
  28. 28.
    J.A. Floro, E. Chason, R.C. Cammarata, D.J. Srolovitz, MRS Bull. 27, 19–25 (2002)CrossRefGoogle Scholar
  29. 29.
    J.R. Liang, K.L. Zhu, R. Yang, M. Hu, Ceram. Int. 44, 2261–2268 (2018)CrossRefGoogle Scholar
  30. 30.
    A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Barsan, W. Gopel, Sens. Actuator B 70, 87–100 (2000)CrossRefGoogle Scholar
  31. 31.
    G.J. Sun, S.W. Choi, S.H. Jung, A. Katoch, S.S. Kim, Nanotechnology 24, 025504–025512 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Materials for Smart SensingGeneral Research Institute for Non-ferrous MetalsBeijingPeople’s Republic of China

Personalised recommendations