Advertisement

Identifying of series resistance and interface states on rhenium/n-GaAs structures using CVT and G/ωVT characteristics in frequency ranged 50 kHz to 5 MHz

  • Osman ÇiçekEmail author
  • Haziret Durmuş
  • Şemsettin Altındal
Article
  • 77 Downloads

Abstract

In this study, Re/n-GaAs with a native oxide layer based on metal–semiconductor (MS) structures were produced and then, the capacitance–voltage–temperature (CVT) and the conductance–voltage–temperature (G/ωVT) data of them were obtained in the frequency ranged 50 kHz to 5 MHz. Using the raw data, the electronic parameters was calculated by the developed LabVIEW-based program. Methodologically, the series resistance (Rs) values were calculated from the measured capacitance (Cm) and conductivity (Gm) values, while the interface state (Nss) values were obtained from using the combined high (CHF)–low (CLF) frequency capacitance method by Nicollian and Brews. Experimentally, the C values increased with a decreasing frequency, while decreased with increasing temperatures in the depletion and accumulation regions. On the other hand, G/ω values decreased with increasing frequency in forward and reverse bias regions. It can be attributed that, the C and the G/ω values are quite affected by the presence of the Rs and the Nss in the forbidden energy gap and a native oxide layer between M and S. The RsVT curves have especially peaks in accumulation and depletion regions at low frequency values, whereas these peaks decreased at high frequencies. In addition, the NssVT curves give peaks in the range of − 0.1 V to 0.7 V at variable temperatures and the Nss values decrease with increasing temperature and shift towards negative bias regions. Experimental results indicate that the Rs and Nss are important parameters and so, these parameters must be considered in sensor applications based on Re/n-GaAs structures.

Notes

References

  1. 1.
    E.H. Rhoderick, Metal-Semiconductor Contacts (Oxford University Press, Oxford, 1978)Google Scholar
  2. 2.
    K. Kano, Semiconductor Devices (Prentice-Hall, Upper Saddle River, 1998)Google Scholar
  3. 3.
    B. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  4. 4.
    S.O. Tan, H. Tecimer, O. Çiçek, Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Trans. Electron Dev. 64(3), 984–990 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Yang, J. Gao, H. Nakashima, Investigation of ZrGe Schottky source/drain contactsfor Ge p-channel MOSFETs. Mater. Sci. Semicond. Process. 26, 614–619 (2014)CrossRefGoogle Scholar
  6. 6.
    D.B. Patel, K.R. Chauhan, S.-H. Park, J. Kim, High-performing transparent photodetectors based on Schottky contacts. Mater. Sci. Semicond. Process. 64, 137–142 (2017)CrossRefGoogle Scholar
  7. 7.
    A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor system. J. Appl. Phys. 36(10), 3212 (1965)CrossRefGoogle Scholar
  8. 8.
    S.-W. Kim, S.-H. Kim, G.-S. Kim, C. Choi, R. Choi, H.-Y. Yu, The Effect of interfacial dipoles on the metal-double interlayers-semiconductor structure and their application in contact resistivity reduction. ACS Appl. Mater. Interfaces. 8, 35614–35620 (2016)CrossRefGoogle Scholar
  9. 9.
    Ç. Güçlü, A. Özdemir, A. Karabulut, A. Kökce, Ş. Altındal, Investigation of temperature dependent negative capacitance in the forwardbias C–V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 89, 26–31 (2019)CrossRefGoogle Scholar
  10. 10.
    O. Çiçek, S. Kurnaz, A. Bekar, Ö. Öztürk, Comparative investigation on electronic properties of metal-semiconductor structures with variable ZnO thin film thickness for sensor applications. Composites B 174, 106987 (2019)CrossRefGoogle Scholar
  11. 11.
    S. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. J. Mater. Sci.: Mater. Electron. 27(8), 8340–8347 (2017)Google Scholar
  12. 12.
    H. Durmuş, H.Ş. Kılıç, S.Y. Gezgin, Ş. Karataş, Analysis of current–voltage–temperature and capacitance–voltage–temperature characteristics of Re/n-Si Schottky contacts. Silicon 10, 361–369 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Buyukbas-Ulusan, I. Taşçıoğlu, A. Tataroğlu, F. Yakuphanoğlu, S. Altındal, A comparative study on the electrical and dielectric properties of Al/Cd-doped ZnO/p-Si structures. J. Mater. Sci.: Mater. Electron. 30(13), 12122–12129 (2019)Google Scholar
  14. 14.
    E. Erbilen Tanrıkulu, Ş. Altındal, Y. Azizian-Kalandaragh, Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J. Mater. Sci.: Mater. Electron. 29(14), 11801–11811 (2018)Google Scholar
  15. 15.
    E. Nicollian, J. Brews, MOS(Metal Oxide Semiconductor Physics and Technology) (Bell Telephone Laboratories, Incorporated, Canada, 1982)Google Scholar
  16. 16.
    E. Nicollian, A. Goetzberger, The Si–SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Technol. J. 46(6), 1055–1133 (1967)CrossRefGoogle Scholar
  17. 17.
    I. Taşçıoğlu, S. Tan, Ş. Altındal, Frequency, voltage and illumination interaction with the electrical characteristics of the CdZnO interlayered Schottky structure. J. Mater. Sci.: Mater. Electron. 30(12), 11536–11541 (2019)Google Scholar
  18. 18.
    S. Altındal, Ö. Sevgili, Y. Azizian-Kalandaragh, The structural and electrical properties of the Au/n-Si (MS) diodes with nanocomposites interlayer (Ag-doped ZnO/PVP) by using the simple ultrasound-assisted method. IEEE Trans. Electron Dev. 66(7), 3103–3109 (2019)CrossRefGoogle Scholar
  19. 19.
    D. Korucu, Ş. Altindal, T.S. Mammadov, S. Özçelik, Origin of anomalous peak and negative capacitance in the forward bias CV characteristics of Au/n-InP Schottky barier diodes (SBDs). J. Optoelectron. Adv. Mater. 11(2), 192–196 (2009)Google Scholar
  20. 20.
    H. Durmuş, M. Yıldırım, Ş. Altındal, On the possible conduction mechanisms in Rhenium/n–GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K. J. Mater. Sci.: Mater. Electron. (2019).  https://doi.org/10.1007/s10854-019-01233-z CrossRefGoogle Scholar
  21. 21.
    O. Çiçek, S. Kurnaz, LabVIEW based a software system: quantitative determination of main electronic parameters for Schottky junction structures. Balk. J. Electr. Comput. Eng. 7(3), 326–331 (2019)CrossRefGoogle Scholar
  22. 22.
    D. Sands, K. Brunson, M. Tayarani-Najaran, Measured intrinsic defect density throughout the entire band gap at the 〈100〉 Si/SiO2 interface. Semicond. Sci. Technol. 7(8), 1091–1096 (1992)CrossRefGoogle Scholar
  23. 23.
    P. Ho, E. Yang, H. Evans, X. Wu, Phys. Rev. Lett. 60, 177–180 (1986)CrossRefGoogle Scholar
  24. 24.
    Ş. Altındal, H. Uslu, J. Appl. Phys. 109, 074503 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Phys. Rev. Lett. 60, 53–56 (1988)CrossRefGoogle Scholar
  26. 26.
    X. Wu, E.S. Yang, J. Appl. Phys. 65, 3560 (1989)CrossRefGoogle Scholar
  27. 27.
    P. Chattopadhyay, B. Raychaudhuri, Solid State Electron. 35, 875 (1992)CrossRefGoogle Scholar
  28. 28.
    M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, A.K. Jonscher, IEEE Trans. Electron. Dev. 45, 2196–2206 (1998)CrossRefGoogle Scholar
  29. 29.
    E. Arslan, Y. Şafak, Ş. Altındal, Ö. Kelekçi, E. Özbay, Non-Cryst. Solids 356, 1006–1011 (2010)CrossRefGoogle Scholar
  30. 30.
    D. Korucu, A. Turut, S. Altındal, Curr. Appl. Phys. 13(6), 1101–1108 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)Google Scholar
  32. 32.
    A. Sing, K. Reinhart, W. Anderson, Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions. J. Appl. Phys. 68(7), 3475–3484 (1990)CrossRefGoogle Scholar
  33. 33.
    P. Chattopadhyay, B. Raychaudhuri, Frequency dependence of forward capacitance–voltage characteristics of Schottky barrier diodes. Solid-State Electron 36(4), 605–610 (1993)CrossRefGoogle Scholar
  34. 34.
    H. Card, E. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589–1601 (1971)CrossRefGoogle Scholar
  35. 35.
    Keithley, C–V Characterization of MOS Capacitors Using the Model 4200-SCS Semiconductor Characterization System (Keithley Instruments, Inc., Cleveland, 2007)Google Scholar
  36. 36.
    R. Castange, A. Vapaille, Description of the SiO2–Si interface properties by means of very low frequency MOS capacitance. Surf. Sci. 28, 157–193 (1971)CrossRefGoogle Scholar
  37. 37.
    K. Kwa, S. Chattopadhyay, N. Jankovic, S. Olsen, L. Driscoll, A. O’Neill, A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics. Semicond. Sci. Technol. 18, 82–87 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTurkey
  2. 2.Physics Department, Faculty of SciencesSelçuk UniversityKonyaTurkey
  3. 3.Physics Department, Faculty of SciencesGazi UniversityAnkaraTurkey

Personalised recommendations