Lanthanum-substituted Ba0.4Ca0.6Fe11.4Co0.6O19 ceramics with enhanced microwave absorption

  • Gangli FengEmail author
  • Wancheng Zhou
  • Yiwen Li
  • Yuchang Qing
  • Fa Luo
  • Dongmei Zhu
  • Zhibin Huang
  • Yingying Zhou


Enhanced microwave absorption Ba0.4−xLaxCa0.6Fe11.4Co0.6O19 (BLCFCO, x = 0.0, 0.1, 0.2, 0.3, and 0.4) ceramics were prepared. The characteristics of the BLCFCO ceramics such as phase, microstructure, magnetic properties, electromagnetic properties, and reflection loss (RL) were investigated. The lanthanum-based substitution enhances the microwave absorption properties of the Ba0.4Ca0.6Fe11.4Co0.6O19 ceramics, and the RL values less than − 5 dB are obtained in 8.6–12.9 GHz with a thickness of 1.5 mm. A maximum RL with − 28.3 dB can be obtained at 10.6 GHz for the composites with x = 0.3. These results indicate that the Ba0.1La0.3Ca0.6Fe11.4Co0.6O19 ceramic developed with an effective, a thin, and wide-bandwidth absorption is highly promising materials for electromagnetic application.



This work was financially supported by the National Nature Science Foundation of China (Grant Nos. 51701148, 51602260, and 51402239), the Fundamental Research Funds for the Central Universities (No. 3102019PB002), and the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. KP201604).


  1. 1.
    K. Rana, P. Thakur, M. Tomar, V. Gupta, A. Thakur, Investigation of cobalt substituted M-type barium ferrite synthesized via co-precipitation method for radar absorbing material in Ku-band (12–18 GHz). Ceram. Int. 44, 6370–6375 (2018)CrossRefGoogle Scholar
  2. 2.
    J.G. Jia, C.Y. Liu, N. Ma, G.R. Han, W.J. Weng, P.Y. Du, Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption. Sci. Technol. Adv. Mater. 14, 045002 (2013)CrossRefGoogle Scholar
  3. 3.
    Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42, 16412–16416 (2016)CrossRefGoogle Scholar
  4. 4.
    V. Sharma, S. Kumari, B.K. Kuanr, Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics. AIP Adv. 8, 056232 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Bahadur, A. Saeed, S. Iqbal et al., Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material. Ceram. Int. 43, 7346–7350 (2017)CrossRefGoogle Scholar
  6. 6.
    H. You, Z. Wu, L. Zhang et al., Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 58, 11779–11784 (2019)CrossRefGoogle Scholar
  7. 7.
    L. Kumar, P. Kumar, V. Kuncser, S. Greculeasa, B. Sahoo, M. Kar, Strain induced magnetism and superexchange interaction in Cr substituted nanocrystalline cobalt ferrite. Mater. Chem. Phys. 211, 54–64 (2018)CrossRefGoogle Scholar
  8. 8.
    S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami et al., Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt-nickel ferrite. J. Mater. Sci. Mater. Electron. 30, 6902–6909 (2019)CrossRefGoogle Scholar
  9. 9.
    Z. Yang, F. Luo, W. Zhou, H. Jia, D. Zhu, Design of a thin and broadband microwave absorber using double layer frequency selective surface. J. Alloy. Compd. 699, 534–539 (2017)CrossRefGoogle Scholar
  10. 10.
    Y.P. Duan, Y.L. Cui, B. Zhang, G.J. Ma, T.M. Wang, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloy. Compd. 773, 194–201 (2019)CrossRefGoogle Scholar
  11. 11.
    H.Y. Wang, J. Cui, Preparation of NiCo2O4 with different morphologies and its effect on absorbing properties. Mater. Lett. 236, 465–467 (2019)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, X.L. Su, F. Luo et al., Facile synthesis and microwave absorption properties of double loss Ti3SiC2/Co3Fe7 powders. Ceram. Int. 44, 1995–2001 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.C. Qing, Q.L. Wen, F. Luo, W.C. Zhou, D.M. Zhu, Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J. Mater. Chem. C 4, 371–375 (2016)CrossRefGoogle Scholar
  14. 14.
    H. You, Y. Jia, Z. Wu, F. Wang, H. Huang, Y. Wang, Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat. Commun. 9, 2889 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite. J. Magn. Magn. Mater. 458, 30–38 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 30, 5854–5865 (2019)CrossRefGoogle Scholar
  17. 17.
    H.Y. Wang, D.M. Zhu, Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range. Ind. Eng. Chem. Res. 57, 2139–2145 (2018)CrossRefGoogle Scholar
  18. 18.
    B. Zhang, Y.P. Duan, Y.L. Cui, G.J. Ma, T.M. Wang, X.L. Dong, Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173–183 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, X.Y. Jian, X.L. Su et al., Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloy. Compd. 740, 68–76 (2018)CrossRefGoogle Scholar
  20. 20.
    Y.C. Qing, Q.L. Wen, F. Luo, W.C. Zhou, Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 4, 4853–4862 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Zong, Y. Huang, N. Zhang, Reduced graphene oxide-CoFe2O4 composite: synthesis and electromagnetic absorption properties. Appl. Surf. Sci. 345, 272–278 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Yang, F. Luo, W. Zhou, D. Zhu, Z. Huang, Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces. J. Alloy. Compd. 687, 384–388 (2016)CrossRefGoogle Scholar
  23. 23.
    X.Y. Xu, F.Z. Huang, Y. Shao et al., Improved magnetic and magnetoelectric properties in BaFe12O19 nanostructures. Phys. Chem. Chem. Phys. 19, 18023–18029 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, M.K. Manglam, S. Supriya, H.K. Satyapal, R.K. Singh, M. Kar, Lattice strain mediated dielectric and magnetic properties in La doped barium hexaferrite. J. Magn. Magn. Mater. 473, 312–319 (2019)CrossRefGoogle Scholar
  25. 25.
    C.J. Wu, Z. Yu, K. Sun et al., Calculation of exchange integrals and Curie temperature for La-substituted barium hexaferrites. Sci. Rep. 6, 36200 (2016)CrossRefGoogle Scholar
  26. 26.
    Z.F. Zi, Q.C. Liu, J.M. Dai, Y.P. Sun, Effects of Ce-Co substitution on the magnetic properties of M-type barium hexaferrites. Solid State Commun. 152, 894–897 (2012)CrossRefGoogle Scholar
  27. 27.
    Y.P. Wang, L.C. Li, H. Liu, H.Z. Qiu, F. Xu, Magnetic properties and microstructure of La-substituted BaCr-ferrite powders. Mater. Lett. 62, 2060–2062 (2008)CrossRefGoogle Scholar
  28. 28.
    X. Xu, L. Xiao, Y. Jia et al., Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature. Energy Environ. Sci. 11, 2198–2207 (2018)CrossRefGoogle Scholar
  29. 29.
    C.J. Li, B. Wang, J.N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1−x)LaxFe12O19 nanofibers. J. Magn. Magn. Mater. 324, 1305–1311 (2012)CrossRefGoogle Scholar
  30. 30.
    H.F. Lou, X.L. Lu, Y.L. Pan et al., Ba1−xLaxFe12O19 (x = 0.0, 0.2, 0.4, 0.6) hollow microspheres: material parameters, magnetic and microwave absorbing properties. J. Mater. Sci. Mater. Electron. 27, 11231–11240 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Arora, S.B. Narang, Investigation of microwave absorptive behavior of La-Na substituted M-type Co-Zr barium hexaferrites in X-band. J. Supercond. Nov. Magn. 29, 2881–2886 (2016)CrossRefGoogle Scholar
  32. 32.
    S.B. Narang, A. Arora, Broad-band microwave absorption and magnetic properties of M-type Ba(1−2x)LaxNaxFe10Co0.5TiMn0.5O19 hexagonal ferrite in 18.0–26.5 GHz frequency range. J. Magn. Magn. Mater. 473, 272–277 (2019)CrossRefGoogle Scholar
  33. 33.
    G.L. Feng, W.C. Zhou, C.H. Wang et al., Microwave absorption of M-type hexaferrite Ba1−xCaxFe12O19 (x  ≤ 0.4) ceramics in 2.6–18 GHz. Ceram. Int. 45, 7102–7107 (2019)CrossRefGoogle Scholar
  34. 34.
    R. Kumar, M. Kar, Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 416, 335–341 (2016)CrossRefGoogle Scholar
  35. 35.
    A.M.V. Diepen, F.K. Lotgering, J. Phys. Chem. Solids 35, 1641 (1974)CrossRefGoogle Scholar
  36. 36.
    A. Auwal, A. Baykal, S. Guner, M. Sertkol, J. Magn. Magn. Mater. 92, 409 (2016)Google Scholar
  37. 37.
    Y.C. Qing, J. Wang, H.Y. Wang, F. Luo, W.C. Zhou, Graphene nanosheets/E-glass/epoxy composites with enhanced mechanical and electromagnetic performance. RSC Adv. 6, 80424–80430 (2016)CrossRefGoogle Scholar
  38. 38.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  39. 39.
    C.Y. Liu, Y.J. Chen, Y.Y. Yue et al., Formation of BaFe12−xNbxO19 and its high electromagnetic wave absorption properties in millimeter wave frequency range. J. Am. Ceram. Soc. 100, 3999–4010 (2017)CrossRefGoogle Scholar
  40. 40.
    D.D. Min, W.C. Zhou, Y.C. Qing, F. Luo, D.M. Zhu, Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber. J. Alloys Compd. 744, 629–636 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Science and Technology on Plasma Dynamic LaboratoryAir Force Engineering UniversityXi’anChina
  3. 3.Xi’an Aeronautical UniversityXi’anChina

Personalised recommendations