Advertisement

Synthesis and photoluminescence study of Ce3+ ion-activated Na2ZnP2O7 and Na4P2O7 pyrophosphate phosphors

  • A. M. Bhake
  • Yatish R. Parauha
  • S. J. DhobleEmail author
Article
  • 59 Downloads

Abstract

The Ce3+ ion-doped Na2ZnP2O7 and Na4P2O7 pyrophosphate phosphors were prepared for the first time via wet chemical method in the history of phosphors. We focused our studies on photoluminescence property of these inorganic solids. In addition, their structural, morphological, spectroscopic, and thermoluminescence properties were also systematically studied and well analyzed. The emission spectra of Ce3+ ion-doped Na2ZnP2O7 and Na4P2O7 phosphors show a broad band in the ultra violet (UV) spectral region due to the presence of 4f–5d transitions of Ce3+ ions. The interesting luminescence properties of these phosphors can make them to be attractive candidates for the application in various fields of luminescence. We reported that at higher concentration of cerium, the cluster formation increases due to ion interaction leading to quenching of the Ce3+ fluorescence. Their XRD was studied for testing the phase purity and crystallinity. SEM gives the particles of a quadrate shape with an average diameter of 1–5 µm, which suggests that the phosphors can be used to fabricate the solid-lighting devices. FT-IR spectra of these pyrophosphates give information regarding the internal and external modes of P2O74−group and metal–oxygen vibrations. Thermoluminescence property of only Na4P2O7 phosphor using γ-irradiated by 60Co source was reported, whereas Na2ZnP2O7 phosphor was found unfavorable in showing TL behavior. Numbers of solid phosphate materials have been synthesized and many still remain to be discovered. They are generally long-lasting, safe, and have a varied range of definite and potential materials applications.

Notes

Acknowledgements

One of the authors Yatish R. Parauha is thankful to the Department of Science and Technology (DST), India for financial support through INSPIRE fellowship (INSPIRE Code—IF180284). One of the authors SJD is thankful to the Department of Science and Technology (DST), India (Nano Mission) (Project Ref. No. DST/NM/NS/2018/38(G), dated 16/01/2019) for financial assistance and R.T.M. Nagpur University, Nagpur for constant encouragement.

References

  1. 1.
    M.R. Brown, A.F.J. Cox, W.A. Shand, J.M. Willian, J. Phys. C 5, 502 (1972)CrossRefGoogle Scholar
  2. 2.
    G. Blasse, Chem. Mater. 1, 294 (1989)CrossRefGoogle Scholar
  3. 3.
    E. Song, W. Zhao, G. Zhou, X. Dou, C. Yi, M. Zhou, J. Rare Earths 29, 440 (2011)CrossRefGoogle Scholar
  4. 4.
    G.N. Nikhare, S.C. Gedam, S.J. Dhoble, Luminescence 30(2), 163–167 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Gacem, A. Artemenko, D. Ouadjaout, J.P. Chaminade, A. Garcia, M. Pollet, O. Viraphong, Solid State Sci. 11, 1854 (2009)CrossRefGoogle Scholar
  6. 6.
    P.A.M. Berdowski, G. Blasse, J. Solid State Chem. 63, 86 (1986)CrossRefGoogle Scholar
  7. 7.
    I. Belharouak, P. Gravereau, C. Parent, J.P. Chaminade, E. Lebraud, G. Le Flem, J. Solid State Chem. 149, 284 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Fhoula, M. Dammak, J. Lumin. 210, 1–6 (2019)CrossRefGoogle Scholar
  9. 9.
    H.G.B. Khaled, I. Khattech, M. Jemal, J. Chem. Thermodyn. 43(4), 521–526 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Wu, J. Appl. Crystallogr. 22, 506 (1989)CrossRefGoogle Scholar
  11. 11.
    X. Wang, J. Wang, J.X. Shi, Q. Su, M.L. Gong, Mater. Res. Bull. 42(9), 1669 (2007)CrossRefGoogle Scholar
  12. 12.
    G.R. Dillip, P.M. Kumar, B.D.P. Raju, S.J. Dhoble, J. Lumin. 134, 333–338 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Berzina-Cimdina, N. Borodajenko, Infrared SpectroscopyMaterials Science, Engineering and Technology, Prof. Theophanides Theophile (ed.), ISBN: 978-953-51-0537-4 (2012)Google Scholar
  14. 14.
    R.A. EL-Mallawary, Infrared Phys. 29(2), 781–785 (1989)CrossRefGoogle Scholar
  15. 15.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  16. 16.
    P. Dorenbos, J. Lumin. 91, 155 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Sailaja, S.J. Dhoble, B.S. Reddy, J. Mol. Struct. 1003, 115 (2011)CrossRefGoogle Scholar
  18. 18.
    N. Shinde, N.S. Dhoble, S.C. Gedam, S.J. Dhoble, Radiat. Effects Defects Solids 169, 361 (2014)CrossRefGoogle Scholar
  19. 19.
    J.A. Wani, M.S. Atone, N.S. Dhoble, S.J. Dhoble, J. Lumin. 134, 640 (2013)CrossRefGoogle Scholar
  20. 20.
    M.S. Rasheedy, M.A. El-Sherif, M.A. Hefni, Nucl. Instrum. Methods B 258, 440 (2007)CrossRefGoogle Scholar
  21. 21.
    Bhushan P. Kore, N.S. Dhoble, K. Park, S.J. Dhoble, J. Lumin. 143, 337 (2013)CrossRefGoogle Scholar
  22. 22.
    S.C. Gedam, S.J. Dhoble, J. Lumin. 132, 2670–2677 (2012)CrossRefGoogle Scholar
  23. 23.
    S.M. Sawde, A.M. Bhake, R.R. Patil, S.J. Dhoble, S.V. Moharil, IJETEMR, IV(1) (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsP.I. Engineering and TechnologyNagpurIndia
  2. 2.Department of PhysicsR.T.M. Nagpur UniversityNagpurIndia

Personalised recommendations