Advertisement

Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation

  • Ruoying Cui
  • Ke TangEmail author
  • Dachuan ZhuEmail author
  • Cheng Yue
  • Lingxiang Yang
Article
  • 13 Downloads

Abstract

Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm3+-doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm3+-doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.

Notes

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    G. Bai, M.-K. Tsang, J. Hao, Adv. Opt. Mater. 3, 431–462 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084–106 (2007)CrossRefGoogle Scholar
  4. 4.
    Q. Yao, F. Wang, C. Jin, Y. Tang, T. Wang, W. Shi, Appl. Phys. A 113, 231–236 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Wu, Z. Wu, W. Mao, Y. Jia, Mater. Lett. 149, 74–76 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, L. Wang, Y. Zhao, Y. Hong, J. Lumin. 207, 82–97 (2016)Google Scholar
  7. 7.
    Q. Zhang, H. Sun, X. Wang, T. Zhang, Mater. Lett. 117, 283–285 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Ryu, B.K. Singh, K.S. Bartwal, M.G. Brik, I.V. Kityk, Acta Mater. 56, 358–363 (2008)CrossRefGoogle Scholar
  9. 9.
    X. Tian, Z. Wu, Y. Jia, J. Chen, R.K. Zheng, Y. Zhang, H. Luo, Appl. Phys. Lett. 102, 042907 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Liang, E. Sun, Z. Liu, Z. Zhang, J. Zeng, W. Ruan, G. Li, W. Cao, Appl. Phys. Lett. 109, 132904 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Lin, R. Liu, J. Phys. Chem. Lett. 2, 1268–1277 (2011)CrossRefGoogle Scholar
  12. 12.
    K. Wang, J.-F. Li, Appl. Phys. Lett. 91, 262902 (2007)CrossRefGoogle Scholar
  13. 13.
    F. Bortolani, A. del Campo, J.F. Fernandez, F. Clemens, F. Rubio-Marcos, Chem. Mater. 26, 3838–3848 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, B. Shen, J. Zhai, H. Zeng, S. Zhang, J. Am. Ceram. Soc. 99, 752–755 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Zhou, Q. Ma, P. Wang, L. Cheng, S. Liu, Ceram. Int. 40, 2451–2459 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Wu, C.M. Lau, K.W. Kwok, R.J. Xie, J. Am. Ceram. Soc. 98, 2139–2145 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Wei, Z. Wu, Y. Jia, Appl. Phys. Lett. 105, 042902 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, K. Chen, L. Wang, H. Sun, X. Wang, X. Hao, J. Mater. Chem. C 3, 5275–5284 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Wu, Z. Wu, W. Qian, Y. Jia, Y. Wang, H. Luo, Mater. Lett. 184, 131–133 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, W. Jie, P. Chen, W. Liu, J. Hao, Adv. Mater. 30, 1707007 (2018)CrossRefGoogle Scholar
  21. 21.
    H.L. Sun, X. Wu, T.H. Chung, K.W. Kwok, Sci. Rep. 6, 28667 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Hao, Y. Zhang, X. Wei, Angew. Chem. 123, 7008–7012 (2011)CrossRefGoogle Scholar
  23. 23.
    Z. Wu, Y. Zhang, G. Bai, W. Tang, J. Gao, J. Hao, Opt. Express 22, 29014–29019 (2014)CrossRefGoogle Scholar
  24. 24.
    Q. Yao, F. Wang, F. Xu, C.M. Leung, T. Wang, Y. Tang, X. Ye, Y. Xie, D. Sun, W. Shi, ACS Appl. Mater. Interfaces 7, 5066–5075 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Zhang, H. Sun, Y. Zhang, J. Ihlefeld, J. Am. Ceram. Soc. 97, 868–873 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Ramajo, M. Castro, A. Del Campo, J.F. Fernandez, F. Rubio-Marcos, J. Mater. Chem. C 3, 4168–4178 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, L. Luo, K. Li, W. Li, Y. Hou, J. Eur. Ceram. Soc. 38, 3154–3161 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Sun, Y. Zhang, J. Liu, D. Peng, Q. Zhang, X. Hao, J. Am. Ceram. Soc. 101, 5659–5674 (2018)CrossRefGoogle Scholar
  29. 29.
    R.D. Shannon, Acta Cryst. 32, 751 (1976)CrossRefGoogle Scholar
  30. 30.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Xia, X. Wang, Y. Wang, L. Liao, X. Jing, Inorg. Chem. 50, 10134–10142 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Material Science and EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.College of GeophysicsChengdu University of TechnologyChengduPeople’s Republic of China

Personalised recommendations