Perfect near-infrared absorption of graphene with hybrid dielectric nanostructures

  • Xiyuan CaoEmail author
  • Yijin Zhang
  • Ziyang Han
  • Wenfei Li
  • Guanyu Liu
  • Zhongying Xue
  • Yi Jin
  • Aimin Wu


Near-infrared perfect wave harvesting of graphene is theoretically and numerically obtained in a hybrid dielectric configuration without assistance of a reflecting mirror. The absorption is increased 43-fold compared to a suspended graphene layer at normal incidence. The mechanism of perfect absorption is based on critical coupling with a guided resonance introduced by a silicon bar array and Fabry–Perot (FP) effect of a silicon oxide layer. This lossless design is expected to find applications to allow the active area with effective generation and fast transport of photocarriers, paving a new way for on-chip small-footprint ultrahigh responsivity and ultrahigh-speed photodetection in silicon photonics.



This work is supported by the National Key Research and Development Program of China (No. 2016YFE0130000), “Strategic Priority Research Program” of Chinese Academy of Sciences (Grant No. XDB24020400), the Zhejiang Provincial Natural Science Foundation of China (No. LY17F010006), the National Natural Science Foundation of China (No. 61875174).


  1. 1.
    H. Lin, B.C.P. Sturmberg, K.T. Lin et al., A 90-nm-thick graphene metamaterial for strong and extremely broadba nd absorption of unpolarized light. Nat. Photonics 13(4), 270–276 (2019)CrossRefGoogle Scholar
  2. 2.
    S. Schuler, D. Schall, D. Neumaier et al., Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5(12), 4758–4763 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Fang, D. Wang, C.T. DeVault et al., Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17(1), 57–62 (2016)CrossRefGoogle Scholar
  4. 4.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRefGoogle Scholar
  5. 5.
    T.R. Zhan, F.Y. Zhao, X.H. Hu et al., Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys. Rev. B 86(16), 165416 (2012)CrossRefGoogle Scholar
  6. 6.
    X. Zhu, W. Yan, P. Uhd Jepsen et al., Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl. Phys. Lett. 102(13), 131101 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Kim, M.S. Jang, V.W. Brar, K.W. Mauser, L. Kim, H.A. Atwater, Electronically tunable perfect absorption in graphene. Nano Lett. 18(2), 971–979 (2018)CrossRefGoogle Scholar
  8. 8.
    F.N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Ma, Y. Salamin, B. Baeuerle et al., Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6(1), 154–161 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Xiong, J. Zhang, Z. Zhu et al., Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci. Rep. 5, 16998 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Lu, B.P. Cumming, M. Gu, Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett. 40(15), 3647–3650 (2015)CrossRefGoogle Scholar
  12. 12.
    X.T. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Youngblood, Y. Anugrah, R. Ma et al., Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14(5), 2741–2746 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Wang, Z. Cheng, Z. Chen et al., High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8(27), 13206–13211 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Furchi et al., Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012)CrossRefGoogle Scholar
  16. 16.
    X.T. Gan et al., Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12(11), 5626–5631 (2012)CrossRefGoogle Scholar
  17. 17.
    R.J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker Jr., J. Hone, D. Englund, Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24), 241109 (2013)CrossRefGoogle Scholar
  18. 18.
    J.R. Piper, S.H. Fan, Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4), 347–353 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, A. Chadha, D. Zhao, J.R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S.H. Fan, F. Xia, W. Zhou, Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl. Phys. Lett. 105, 181105 (2014)CrossRefGoogle Scholar
  20. 20.
    J.R. Piper, V. Liu, S.H. Fan, Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104(25), 251110 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Wang, A. Klots, Y. Yang, W. Li, I.I. Kravchenko, D.P. Briggs, K.I. Bolotin, J. Valentine, Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl. Phys. Lett. 106(18), 181104 (2015)CrossRefGoogle Scholar
  22. 22.
    C.C. Guo, Z.H. Zhu, X.D. Yuan, W.M. Ye, K. Liu, J.F. Zhang, W. Xu, S.Q. Qin, Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures. Adv. Opt. Mater. 4(12), 1955–1960 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.S. Fan, C.C. Guo, Z.H. Zhu, W. Xu, F. Wu, X.D. Yuan, S.Q. Qin, Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express 25(12), 13079–13086 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Wu, Ultra-narrow perfect graphene absorber based on critical coupling. Opt. Commun. 435, 25–29 (2019)CrossRefGoogle Scholar
  25. 25.
    X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt. Express 25(22), 27028–27036 (2017)CrossRefGoogle Scholar
  26. 26.
    Y.M. Qing, H.F. Ma, Y.Z. Ren, S. Yu, T.J. Cui, Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial. Opt. Express 27(4), 5253–5263 (2019)CrossRefGoogle Scholar
  27. 27.
    H.A. Haus, Waves and fields in optoelectronics (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984)Google Scholar
  28. 28.
    A. Yariv, Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14(4), 483–485 (2002)CrossRefGoogle Scholar
  29. 29.
    J.R. Tischler, M.S. Bradley, V. Bulovic, Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31(13), 2045–2047 (2006)CrossRefGoogle Scholar
  30. 30.
    S.H. Fan, J. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)CrossRefGoogle Scholar
  31. 31.
    V.N. Astratov, I.S. Culshaw, Resonant coupling of near-infrared radiation to photonic band structure waveguides. J. Lightwave Technol. 17(11), 2050–2057 (1999)CrossRefGoogle Scholar
  32. 32.
    S.S. Wang, R. Magnusson, J.S. Bagby et al., Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 7(8), 1470–1474 (1990)CrossRefGoogle Scholar
  33. 33.
    E.D. Palik, Handbook of optical constants of Solids (Academic Press, San Diego, 1998)Google Scholar
  34. 34.
    M. Bruna, S. Borini, Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94(3), 031901 (2009)CrossRefGoogle Scholar
  35. 35.
    V. Liu, S. Fan, S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183(10), 2233–2244 (2012)CrossRefGoogle Scholar
  36. 36.
    M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. A 71, 811 (1981)CrossRefGoogle Scholar
  37. 37.
    Y. Yang, V.A. Zenin, S.I. Bozhevolnyi, Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 5(5), 1960–1966 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, School of Physics and Materials ScienceEast China Normal UniversityShanghaiChina
  2. 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of Optoelectronic Information EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations