Improved optical absorption, enhanced morphological and electrochemical properties of pulsed laser deposited binary zinc and vanadium oxide thin films

  • Cyril Robinson Azariah John ChelliahEmail author
  • Rajesh Swaminathan


The investigations were carried out on binary metal oxide ZnO/V2O5 nanostructured thin films prepared by pulsed laser deposition for the MOSFET channel application. The thin films were prepared at 298 (as deposited), 623, 773, and 923 K at 10 Hz laser repetition rate (LRR) for 30 min. The films were characterized by SEM, EDAX, XRD, UV–Visible spectroscopy, and IV measurements. The amorphous nature of the film deposited below 773 K was revealed by XRD analysis. Few diffraction peaks were seen in the 923 K sample, revealing the formation of Zn2V2O7 and Zn3V3O8 in the binary ZVO thin films. All the samples are partially or completely amorphous in nature till 923 K. The optical energy bandgap was measured using Tauc plot and it was found to be 3.1–3.7 eV for the ZVO thin films. Then, the films were investigated by impedance and modulus spectroscopy over a frequency range of 1 Hz–1 MHz and temperatures lying in the 298–473 K domain. The frequency response of the imaginary impedance (Z″) shows a relaxation behavior for each measuring temperature in all the three samples. However, four samples were fabricated, namely, at 298 (as deposited), 623, 773, and 923 K. The three binary metal oxides pulsed laser deposited at high temperatures show a semiconducting behavior. The activation energy (Ea) was determined from the Arrhenius plot based on impedance and modulus relaxation. The activation energy is minimal for the high-temperature PLD thin films.



We sincerely thank the Centre for Research in Nanotechnology facilities at Karunya Institute of Technology and Sciences, Coimbatore, India for carrying out this research work. We also indebt our sincere gratitude to the department of Electronics and Communication Engineering, Saveetha School of Engineering, Chennai, India for their continuous encouragement to write research papers.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Y.E. Bhoge, V.J. Patil, T.D. Deshpande, R.D. Kulkarni, Synthesis and anticorrosive performance evaluation of zinc vanadate pigment. Vacuum 145, 290–294 (2017). CrossRefGoogle Scholar
  2. 2.
    C.R.A. John Chelliah, R. Swaminathan, Pulsed laser deposited hexagonal wurzite ZnO thin-film nanostructures/nanotextures for nanophotonics applications, J. Nanophotonics. 12 (2018) 1. CrossRefGoogle Scholar
  3. 3.
    B.S. Sengar, V. Garg, A. Kumar, V. Awasthi, S. Kumar, V.V. Atuchin, S. Mukherjee, Band alignment of Cd-free (Zn, Mg)O layer with Cu2ZnSn(S, Se)4 and its effect on the photovoltaic properties. Opt. Mater. (Amst) 84, 748–756 (2018). CrossRefGoogle Scholar
  4. 4.
    V.V. Atuchin, B.M. Ayupov, V.A. Kochubey, L.D. Pokrovsky, C.V. Ramana, Y.M. Rumiantsev, Optical properties of textured V2O5/Si thin films deposited by reactive magnetron sputtering. Opt. Mater. (Amst) 30, 1145–1148 (2008). CrossRefGoogle Scholar
  5. 5.
    V.V. Atuchin, V.A. Kochubey, L.D. Pokrovsky, V.N. Kruchinin, C.V. Ramana, Effects of process parameters on the optical constants of highly textured V2O5 thin films. Opt. Spectrosc. 117, 423–427 (2014). CrossRefGoogle Scholar
  6. 6.
    V. Garg, B.S. Sengar, V. Awasthi, A. Kumar, R. Singh, S. Kumar, C. Mukherjee, V.V. Atuchin, S. Mukherjee, Investigation of Dual-Ion Beam Sputter-Instigated Plasmon Generation in TCOs: a Case Study of GZO. ACS Appl. Mater. Interfaces. 10, 5464–5474 (2018). CrossRefGoogle Scholar
  7. 7.
    R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412 (2014). CrossRefGoogle Scholar
  8. 8.
    Y. Jin, J. Long, X. Ma, T. Zhou, Z. Zhang, H. Lin, J. Long, X. Wang, Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties. Appl. Catal. B 256, 117873 (2019). CrossRefGoogle Scholar
  9. 9.
    S.F. Olive-Méndez, C.R. Santillán-Rodríguez, R.A. González-Valenzuela, F. Espinosa-Magaña, J.A. Matutes-Aquino, Role of vanadium ions, oxygen vacancies, and interstitial zinc in room temperature ferromagnetism on ZnO-V2O5 nanoparticles. Nanoscale Res. Lett. 9, 169 (2014). CrossRefGoogle Scholar
  10. 10.
    J. Wang, Z. Yue, Z. Gui, L. Li, Low temperature sintered ZnNb2O6 microwave dielectric ceramics doped with ZnO-V2O5 additions. J. Mater. Sci. 40, 6581–6583 (2005). CrossRefGoogle Scholar
  11. 11.
    J.-K. Tsai, T.-B. Wu, Microstructure and nonohmic properties of $\bf ZnO\mbox{-}V_{2}O_{5}$ ceramics. Jpn. J. Appl. Phys. 34, 6452–6457 (1995). CrossRefGoogle Scholar
  12. 12.
    J.F. Lawler, J.M.D. Coey, J.G. Lunney, V. Skumryev, Pulsed laser deposition of thin films of (La1-xCax)MnO3. J. Phys. 8, 10737–10752 (1996). CrossRefGoogle Scholar
  13. 13.
    J. Cheung, J. Horwitz, Pulsed laser deposition history and laser-target interactions. MRS Bull. 17, 30–36 (1992). CrossRefGoogle Scholar
  14. 14.
    S.M. Metev, V.P. Veiko, Pulsed laser-plasma deposition of thin films, and film structures, (1998) 228–246. CrossRefGoogle Scholar
  15. 15.
    C.R.A.J. Chelliah, R. Swaminathan, Study of the pulsed laser deposited ZnO thin films and its electrical performance as n -Channel in MOSFET. J. Nanoelectron. Optoelectron. 13, 708–714 (2018). CrossRefGoogle Scholar
  16. 16.
    R. Abaira, T. Dammak, A. Matoussi, A. Younes, Structural and optical properties of zinc oxide doped by V2O5 synthesized by solid-state reaction. Superlattices Microstruct. 91, 365–374 (2016). CrossRefGoogle Scholar
  17. 17.
    S. Hong, R.M. Doughty, F.E. Osterloh, J.V. Zaikina, Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors—mapping oxygen vacancies and their effect on photovoltage. J. Mater. Chem. A 7, 12303–12316 (2019). CrossRefGoogle Scholar
  18. 18.
    L. Fan, Y. Chen, Q. Liu, S. Chen, L. Zhu, Q. Meng, B. Wang, Q. Zhang, H. Ren, C. Zou, Infrared response and optoelectronic memory device fabrication based on epitaxial VO2 film. ACS Appl. Mater. Interfaces. 8, 32971–32977 (2016). CrossRefGoogle Scholar
  19. 19.
    A.A. Mane, A.V. Moholkar, Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films. Appl. Surf. Sci. 416, 511–520 (2017). CrossRefGoogle Scholar
  20. 20.
    S.A. Mahmoud, S.H. Bendary, A.A. Salem, O.A. Fouad, Facile synthesis of high yield two dimensional zinc vanadate nanoflakes. SN Appl. Sci. 1, 497 (2019). CrossRefGoogle Scholar
  21. 21.
    S. Kwon, D.Y. Kim, B.-H. Jun, K.-B. Chung, Optimization of the electrical and optical properties of vanadium doped InZnO thin films. Appl. Phys. Lett. 113, 121905 (2018). CrossRefGoogle Scholar
  22. 22.
    K.H. Patel, S.K. Rawal, Exploration of wettability and optical aspects of ZnO Nano thin films synthesized by radio frequency magnetron sputtering. Nanomater. Nanotechnol. 6, 22 (2016). CrossRefGoogle Scholar
  23. 23.
    G.T. Mola, E.A.A. Arbab, B.A. Taleatu, K. Kaviyarasu, I. Ahmad, M. Maaza, Growth and characterization of V 2 O 5 thin film on conductive electrode. J. Microsc. 265, 214–221 (2017). CrossRefGoogle Scholar
  24. 24.
    W. Ahmad, U. Mehmood, A. Al-Ahmed, F.A. Al-Sulaiman, M.Z. Aslam, M.S. Kamal, R.A. Shawabkeh, Synthesis of zinc oxide/titanium dioxide (ZnO/TiO2) nanocomposites by wet incipient wetness impregnation method and preparation of ZnO/TiO2 paste using poly(vinylpyrrolidone) for efficient dye-sensitized solar cells. Electrochim. Acta 222, 473–480 (2016). CrossRefGoogle Scholar
  25. 25.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, G. Sivakumar, Physical properties of Zn doped TiO 2 thin films with spray pyrolysis technique and its effects in antibacterial activity, Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 138, 105–112 (2015). CrossRefGoogle Scholar
  26. 26.
    H. Ait ahsaine, M. Zbair, M. Ezahri, A. Benlhachemi, M. Arab, B. Bakiz, F. Guinneton, J.-R. Gavarri, Rietveld refinements, impedance spectroscopy and phase transition of the polycrystalline ZnMoO4 ceramics, Ceram. Int. 41 (2015) 15193–15201. CrossRefGoogle Scholar
  27. 27.
    M. Prabu, S. Selvasekarapandian, Dielectric and modulus studies of LiNiPO4. Mater. Chem. Phys. 134, 366–370 (2012). CrossRefGoogle Scholar
  28. 28.
    J. Wang, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, M. Zhang, Z. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 184, 1421–1427 (2011). CrossRefGoogle Scholar
  29. 29.
    S. Dhankhar, R.S. Kundu, M. Dult, S. Murugavel, R. Punia, N. Kishore, Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses. Indian J. Phys. 90, 1033–1040 (2016). CrossRefGoogle Scholar
  30. 30.
    B. Etemadi, J. Mazloom, F.E. Ghodsi, Phase transition and surface morphology effects on optical, electrical and lithiation/delithiation behavior of nanostructured Ce-doped V2O5 thin films. Mater. Sci. Semicond. Process. 61, 99–106 (2017). CrossRefGoogle Scholar
  31. 31.
    R. Cheruku, L. Vijayan, G. Govindaraj, Electrical relaxation studies of solution combustion synthesized nanocrystalline Li2NiZrO4 material. Mater. Sci. Eng., B 177, 771–779 (2012). CrossRefGoogle Scholar
  32. 32.
    K.S. Hemalatha, G. Sriprakash, M.V.N. Ambika Prasad, R. Damle, K. Rukmani, Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy, J. Appl. Phys. 118 (2015) 154103. CrossRefGoogle Scholar
  33. 33.
    M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni 0.27 Cu 0.10 Zn 0.63 Fe 2 O 4, J. Adv. Ceram. 4 (2015) 217–225. CrossRefGoogle Scholar
  34. 34.
    A.M. Torres-Huerta, J.G. González-Reyes, M.E. Villafuerte-Castrejón, F. González, E. Ramírez-Meneses, M.A. Domínguez-Crespo, PORTUGALIAE ELECTROCHIMICA ACTA transition temperature of lead-free piezoelectric ceramics by electrochemical impedance spectroscopy. Port. Electrochim. Acta. 27, 363–369 (2009). CrossRefGoogle Scholar
  35. 35.
    R.A. John, N.A. Chien, S. Shukla, N. Tiwari, C. Shi, N.G. Ing, N. Mathews, Low-temperature chemical transformations for high-performance solution-processed oxide transistors. Chem. Mater. 28, 8305–8313 (2016). CrossRefGoogle Scholar
  36. 36.
    R. Gerhardt, Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids 55, 1491–1506 (1994). CrossRefGoogle Scholar
  37. 37.
    V. Thakur, A. Singh, R. Punia, S. Dahiya, L. Singh, Structural properties and electrical transport characteristics of modified lithium borate glass ceramics. J. Alloys Compd. 696, 529–537 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication Engineering, Saveetha School of EngineeringSaveetha Institute of Medical and Technical SciencesChennaiIndia
  2. 2.Department of PhysicsKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations