Advertisement

Growth, structural, Hirshfeld surface, optical, laser damage threshold, dielectric and chemical etching analysis of 4-dimethylaminopyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) single crystal

  • Kamalesh Tamilselvan Email author
  • Karuppasamy Pichan 
  • Senthilkumar Chandran 
  • Senthil Pandian Muthu 
  • Ramasamy Perumalsamy 
  • Verma Sunil 
Article
  • 25 Downloads

Abstract

The organic 4-dimethylaminopyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) single crystal was grown by slow evaporation solution growth technique at 35 °C. The single crystal X-ray diffraction analysis confirms that the grown crystal belongs to the orthorhombic crystal system with the space group of P212121. Different functional groups were affirmed using FT-IR and FT-Raman analysis. The intermolecular interactions of the DMAPNP molecule were executed using Hirshfeld surface study. The Mulliken atomic charge population analysis was performed using density functional theory (DFT). The bonding interactions between two orbital atoms and groups were executed by the density of state (DOS). The optical transmittance study shows that the grown crystal has 60 to 78% transmittance in the Vis–NIR region. It has an emission peak at 482 nm in the photoluminescence (PL) spectrum. The photoconductivity analysis shows that the DMAPNP has negative photoconductive behavior. The thermal stability of the DMAPNP crystal was investigated by TG–DTA analysis. The etch pit density of the title crystal was investigated using chemical etching study. The mechanical stability of the DMAPNP crystal was tested by Vickers microhardness tester. Laser damage threshold analysis reveals that the DMAPNP is stable up to 10 mJ of laser power. The dielectric properties were assessed and the electronic polarizability of the DMAPNP was evaluated by the different empirical relations. The second harmonic generation (SHG) efficiency of DMAPNP crystal was measured by Kurtz–Perry powder technique.

Notes

Acknowledgements

The authors are thankful to BRNS ((Ref. 34/14/06/2016-BRNS/34032), Government of India) for providing funding.

Supplementary material

10854_2019_2536_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1694 kb)

References

  1. 1.
    X. Zhang, X. Jiang, Y. Li, Z. Lin, G. Zhang, Y. Wu, Synthesis, crystal growth, and second-order nonlinear optical properties of new configurationally locked polyene derivatives. Cryst Eng Comm 17, 1050–1055 (2015).  https://doi.org/10.1039/c4ce01708k CrossRefGoogle Scholar
  2. 2.
    D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals (Academic Press, New York, 1987)Google Scholar
  3. 3.
    J. Pecaut, R. Masse, Structure of bis(2-amino-5-nitropyridinium) dichromate as a step towards the design of efficient organic–inorganic non-linear optical crystals. Acta Crystallogr. B 49, 277 (1993).  https://doi.org/10.1107/s0108768192008553 CrossRefGoogle Scholar
  4. 4.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish et al., Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11. 9Al0. 1O19) 1-x-(BaTiO3) x bicomponent ceramics. Ceram. Int. 17, 21295–21302 (2018)CrossRefGoogle Scholar
  5. 5.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov et al., Temperature evolution of the structure parameters and exchange interactions in BaFe12 − xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)CrossRefGoogle Scholar
  6. 6.
    T. Kolev, I.V. Kityk, J. Ebothe, B. Sahraoui, Intrinsic hyperpolarizability of 3-dicyanomethylene-5,5-dimethyl-1-[2-(4-hydroxyphenyl)ethenyl]-cyclohexene nanocrystallites incorporated into the photopolymer matrices. J. Chem. Phys. Lett. 443, 309–312 (2007).  https://doi.org/10.1016/j.cplett.2007.06.051 CrossRefGoogle Scholar
  7. 7.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12–xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016).  https://doi.org/10.1134/S0021364016020132 CrossRefGoogle Scholar
  8. 8.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–016106 (2016).  https://doi.org/10.1088/1674-1056/25/1/016102 CrossRefGoogle Scholar
  9. 9.
    N. Vembu, M. Nallu, E.C. Spencer, J. Howard, 4-Dimethylaminopyridinium 4-nitrophenolate ± 4-nitrophenol (1/1/1). A. Acta Cryst. E 59, 01192–01195 (2003).  https://doi.org/10.1107/S1600536803016179 CrossRefGoogle Scholar
  10. 10.
    C.C. Evans, M.B. Beucher, R. Massse, J.F. Nicoud, Nonlinearity enhancement by solid-state proton transfer: a new strategy for the design of nonlinear optical materials. Chem. Mater. 10, 847–854 (1998).  https://doi.org/10.1021/cm970618g CrossRefGoogle Scholar
  11. 11.
    P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan, P. Ramasamy, Studies on the growth, optical, thermal and dielectric aspects of a proton transfer complex Dimethyl amino pyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) crystals for non-linear optical applications. Opt. Mater. 30, 553–564 (2007).  https://doi.org/10.1016/j.optmat.2007.01.014 CrossRefGoogle Scholar
  12. 12.
    C.J. John, M. Amalanathan, A.R. Twinkle, P. Srinivasan, I.H. Joe, Vibrational spectra and first order hyperpolarizability studies of dimethyl aminopyridinium 4-nitrophenolate 4-nitrophenol. Spectrochim. Acta A 81, 151–161 (2011).  https://doi.org/10.1016/j.saa.2011.05.086 CrossRefGoogle Scholar
  13. 13.
    S. Chandran, R. Paulraj, P. Ramasamy, Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal. J. Cryst. Growth 468, 68–72 (2017).  https://doi.org/10.1016/j.jcrysgro.2016.11.006 CrossRefGoogle Scholar
  14. 14.
    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522–529 (2019).  https://doi.org/10.1016/j.jallcom.2019.03.314 CrossRefGoogle Scholar
  15. 15.
    A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J. Alloys Compd. 788, 1193–1202 (2019).  https://doi.org/10.1016/j.jallcom.2019.02.303 CrossRefGoogle Scholar
  16. 16.
    Mohan, J.: Organic Spectroscopy: Principle and Applications, 2004Google Scholar
  17. 17.
    K. Sathya, P. Dhamodharan, M. Dhandapani, Computational, spectral and structural studies of a new non linear optical crystal: 2-hydroxy pyridinium 3,5-dinitrobenzoate. J. Mol. Struct. 1130, 414–424 (2017).  https://doi.org/10.1016/j.molstruc.2016.10.018 CrossRefGoogle Scholar
  18. 18.
    D.K. Patel, U.H. Patel, Quantitative analysis of weak interactions by Lattice energy calculation, Hirshfeld surface and DFT studies of sulfamonomethoxine. J. Mol. Struct. 1128, 127–134 (2017).  https://doi.org/10.1016/j.molstruc.2016.08.046 CrossRefGoogle Scholar
  19. 19.
    K. Muthu, V. Meenatchi, M. Rajasekar, A.A. Prasad, K. Meena, R. Agilandeshwari, V. Kanagarajan, S.P. Meenakshisundaram, Combined theoretical and experimental studies on the molecular structure, spectral and Hirshfeld surface studies of NLO tris(thiourea)zinc(II) sulfate crystals. J. Mol. Struct. 1091, 210–221 (2015).  https://doi.org/10.1016/j.molstruc.2015.02.085 CrossRefGoogle Scholar
  20. 20.
    R.S. Mulliken, Electronic population analysis on LCAO–MO molecular wave functions. J. Chem. Phys. 23, 1833 (1955).  https://doi.org/10.1063/1.1740588 CrossRefGoogle Scholar
  21. 21.
    J. Murray, K. Sen, Theoretical and Computational Chemistry (Elsevier, Amsterdam, 1996), pp. 649–660Google Scholar
  22. 22.
    E.I. Paulraj, S. Muthu, Spectroscopic studies (FTIR, FT-Raman and UV), potential energy surface scan, normal coordinate analysis and NBO analysis of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl) piperidine-3,4,5-triol by DFT methods. Spectrochim. Acta A 108, 38–49 (2013).  https://doi.org/10.1016/j.saa.2013.01.061 CrossRefGoogle Scholar
  23. 23.
    P. Politzer, D.G. Truhlar, Chemical aplications of atomic and molecular electrostatic potentional (Plenum Press, New York, 1981)CrossRefGoogle Scholar
  24. 24.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, A library for package-independent computational chemistry algorithms. J. Compos. Chem 29, 839–845 (2008).  https://doi.org/10.1002/jcc.20823 CrossRefGoogle Scholar
  25. 25.
    N. Sudharsana, V. Krishnakumar, R. Nagalakshmi, Synthesis, experimental and theoretical Studies of 8-hydroxyquinolinium 3,5-dinitrobenzoate single crystal. J. Cryst. Growth 398, 45–57 (2014).  https://doi.org/10.1016/j.jcrysgro.2014.03.051 CrossRefGoogle Scholar
  26. 26.
    P. Rekha, G. Peramaiyan, M.N. Mohideen, R.M. Kumar, R. Kanagadurai, Synthesis, growth, structural and optical studies of a novel organic Piperazine (bis) p-toluenesulfonate single crystal. Spectrochim. Acta Mol. Biomol. Spectrosc. 139, 302–306 (2015).  https://doi.org/10.1016/j.saa.2014.12.069 CrossRefGoogle Scholar
  27. 27.
    A. Ashour, N. El-Kadry, S.A. Mahmoud, On the electrical and optical properties of CdS films thermally deposited by a modified source. Thin Solid Films 269, 117–120 (1995).  https://doi.org/10.1016/0040-6090(95)06868-6 CrossRefGoogle Scholar
  28. 28.
    R. Robert, C. Justin Raj, S. Krishnan, S. Jerome Das, Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan-Ramasamy (mSR) method. Phys. B 405, 20–24 (2010).  https://doi.org/10.1016/j.physb.2009.08.015 CrossRefGoogle Scholar
  29. 29.
    K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru, S. Brahadeeswaran, Second- and third-order nonlinear optical and quantum chemical studies on 2-amino-4-picolinium-nitrophenolate-nitrophenol: a phasematchable organic single crystal. Opt. Mater. 49, 158–170 (2015).  https://doi.org/10.1016/j.optmat.2015.09.014 CrossRefGoogle Scholar
  30. 30.
    P. Karuppasamy, M.S. Pandian, P. Ramasamy, Crystal growth and characterization of third order nonlinear optical piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) single crystal. J. Cryst. Growth 473, 39–54 (2017).  https://doi.org/10.1016/j.jcrysgro.2017.05.018 CrossRefGoogle Scholar
  31. 31.
    F. Stockmann, Negative photoeffekte in halbleitern. Z. Angew. Phys. 143, 348–356 (1955).  https://doi.org/10.1007/BF01392743 CrossRefGoogle Scholar
  32. 32.
    F. Yogam, I.V. Potheher, R. Jeyasekaran, M. Vimalan, M.A. Arockiaraj, P. Sagayaraj, Growth, thermal, and optical properties of l-asparagine monohydrate NLO single crystal. J. Therm. Anal. Calorim. 114, 1153 (2013).  https://doi.org/10.1007/s10973-013-3138-8 CrossRefGoogle Scholar
  33. 33.
    P. Karuppasamy, M.S. Pandian, P. Ramasamy, S.K. Das, Growth and characterization of semi-organic nonlinear optical (NLO) guanidinium trichloroacetate (GTCA) single crystal. Optik 156, 707–719 (2018).  https://doi.org/10.1016/j.ijleo.2017.12.012 CrossRefGoogle Scholar
  34. 34.
    M. Shkir, B. Riscob, M. Hasmuddin, P. Singh, V. Ganesh, M.A. Wahab, E. Dieguez, G. Bhagavannarayana, Optical spectroscopy, crystalline perfection, etching and mechanical studies on P-nitroaniline (PNA) single crystals. Opt. Mater. 36, 675–681 (2014).  https://doi.org/10.1016/j.optmat.2013.11.009 CrossRefGoogle Scholar
  35. 35.
    K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000).  https://doi.org/10.1016/s0254-0584(99)00216-3 CrossRefGoogle Scholar
  36. 36.
    H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, K. Yoshida, Dependences of laser-induced bulk damage threshold and crack Patterns in several nonlinear crystals on irradiation direction. J. Appl. Phys. 45, 766 (2006).  https://doi.org/10.1143/jjap.45.766 CrossRefGoogle Scholar
  37. 37.
    N.L. Boling, M.D. Crisp, G. Dube, Laser induced surface damage. Appl. Opt. 12, 650–660 (1973).  https://doi.org/10.1364/ao.12.000650 CrossRefGoogle Scholar
  38. 38.
    C.W. Carr, H.B. Rodousky, A.M. Rubenchik, M.D. Feit, S.G. Demos, Localized dynamics during laser-induced damage in optical materials. Phys. Rev. Lett. 92, 087401–087403 (2004).  https://doi.org/10.1103/physrevlett.92.087401 CrossRefGoogle Scholar
  39. 39.
    B. Babu, J. Chandrasekaran, B. Mohanbabu, Y. Matsushita, M. Saravanakumar, Growth, physicochemical and quantum chemical investigations on 2-amino 5-chloropyridinium 4-carboxybutanoate—an organic crystal for biological and optoelectronic device applications. RSC Adv. 112, 110884–110897 (2016).  https://doi.org/10.1039/c6ra15791b CrossRefGoogle Scholar
  40. 40.
    K.D. Parikh, D.J. Dave, M.J. Joshi, Crystal growth, thermal, optical, and dielectric properties of lysine doped KDP crystals. Modern Phys. Lett. 12, 1589–1602 (2009)CrossRefGoogle Scholar
  41. 41.
    P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3, 5-dinitrobenzoate (KDNB) single crystals. RSC Adv. 110, 109105–109123 (2016)CrossRefGoogle Scholar
  42. 42.
    Mohana K. Priyadarshini, A. Chandramohan, Babu G. Anandha, P. Ramasamy, Synthesis, crystal growth, spectral, optical, thermal and dielectric studies of dichloro (4-hydroxy-l-proline) cadmium (II) single crystals. Optik 3, 1390–1395 (2014)CrossRefGoogle Scholar
  43. 43.
    U.V. Hundelshausen, Electrooptic effect and dielectric properties of cadmium-mercury-thiocyanate crystals. Phys. Lett. A 34, 405–406 (1971).  https://doi.org/10.1016/0375-9601(71)90939-x CrossRefGoogle Scholar
  44. 44.
    S. Suresh, Theoretical studies of solid state dielectric parameters of hydroxyapatite. Mater. Phys. Mech 14, 145–151 (2012)Google Scholar
  45. 45.
    J.D. Jackson, Classical electrodynamics (Wiley Eastern, New Delhi, 1978)Google Scholar
  46. 46.
    D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)CrossRefGoogle Scholar
  47. 47.
    C. Balarew, R. Duhlew, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J. Solid State Chem. 55, 1–6 (1984).  https://doi.org/10.1016/0022-4596(84)90240-8 CrossRefGoogle Scholar
  48. 48.
    N.M. Ravindra, V.K. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. J. Infrared Phys 20, 67–69 (1980).  https://doi.org/10.1016/0020-0891(80)90009-3 CrossRefGoogle Scholar
  49. 49.
    M. Wolf, E. Wolf, Osnovy optiki, 2nd edn. (Nauka, Moscow, 1973)Google Scholar
  50. 50.
    M.J. Renne, B.R.A. Nijboer, Microscopic derivation of macroscopic Van der Waals forces. Chem. Phys. Lett. 1, 317–320 (1967).  https://doi.org/10.1016/0009-2614(67)80004-6 CrossRefGoogle Scholar
  51. 51.
    B.W. Kwaadgras, M. Verdult, M. Dijkstra, R. van Roij, Polarizability and alignment of dielectric nanoparticles in an external electric field: bowls, dumbbells, and cuboids. J. Chem. Phys. 135, 134105 (2011).  https://doi.org/10.1063/1.3637046 CrossRefGoogle Scholar
  52. 52.
    S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SSN Research Centre, SSN College of EngineeringChennaiIndia
  2. 2.Laser Materials Development and Devices DivisionRaja Ramanna Centre for Advance Technology (RRCAT)IndoreIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations