Advertisement

The preparation and dielectric properties of dielectric ceramic composites with controllable thermal expansion: SrTiO3/ZrMgMo3O12

  • Mengjie Yang
  • Yuxiang Li
  • Juan Guo
  • Shuangshuang Wei
  • Hui Wang
  • Xinbo Tang
  • Yajie Jiao
  • Mingju ChaoEmail author
  • Dongzhe TianEmail author
  • Erjun Liang
Article
  • 29 Downloads

Abstract

Controllable thermal expansion dielectric ceramic of SrTiO3/ZrMgMo3O12 has been fabricated by solid-state method. The experimental results indicate that the coefficient of thermal expansion (CTE) of the composites could be adjusted from 10.13 × 10−6 to 4.06 × 10−6 K−1. At 10 MHz, dielectric constants of composites are in the range of 40.70–21.17, while dissipation factors changed from 1.17 × 10−4 to 79.7 × 10−4. The composite wherein the volume fraction of ZrMgMo3O12 was 40%, showed the following excellent properties: low CTE (6.53 × 10−6 K−1), moderate dielectric constants (28.95) and low dissipation factor (tanδ, 1.17 × 10−4) at 10 MHz. Therefore, this composite could be used as a high-frequency dielectric ceramic.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11574276), and the key Natural Science Project of Henan Province (Grant No. 142102210073).

References

  1. 1.
    A. Sanson, J. Chen, Front Chem 7, 284 (2019)CrossRefGoogle Scholar
  2. 2.
    T.A. Mary, J.S.O. Evans, A.W. Sleight, Science 272, 90–92 (1996)CrossRefGoogle Scholar
  3. 3.
    E.J. Liang, Recent Pat. Mater. Sci. 3, 106–128 (2010)CrossRefGoogle Scholar
  4. 4.
    M.T. Dove, H. Fang, Rep. Prog. Phys. 79, 066503 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Chen, L. Hu, J.X. Deng, X.R. Xing, Chem. Soc. Rev. 44, 3522–3567 (2015)CrossRefGoogle Scholar
  6. 6.
    R. Mittal, M.K. Gupta, S.L. Chaplot, Mater. Sci. 92, 360–445 (2018)Google Scholar
  7. 7.
    X.B. Yang, J. Xu, H.J. Li, X.N. Cheng, X.H. Yan, J. Am. Ceram. Soc. 90, 1953–1955 (2007)CrossRefGoogle Scholar
  8. 8.
    J. Yang, Y.S. Yang, Q.Q. Liu, G.F. Xu, X.N. Cheng, J. Mater. Sci. Technol. 26, 665–668 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Zhou, Q. Zhang, S.Y. Liu, T. Zhou, J.R. Jokisaari, G.H. Wu, J. Alloys Compd. 670, 182–187 (2016)CrossRefGoogle Scholar
  10. 10.
    Z.P. Zhang, W.K. Sun, H.F. Liu, G.H. Xie, X.B. Chen, X.H. Zeng, Front Chem. 5, 1–6 (2015)Google Scholar
  11. 11.
    X. Xiao, W.J. Zhou, X.S. Liu, M.J. Chao, Y.C. Li, N. Zhang, Y.M. Liu, Y.X. Li, D.S. Feng, E.J. Liang, Ceram. Int. 41, 2361–2366 (2015)CrossRefGoogle Scholar
  12. 12.
    X.S. Liu, F.X. Cheng, J.Q. Wang, W.B. Song, B.H. Yuan, E.J. Liang, J. Alloys. Compd. 553, 1–7 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Zhang, Y.C. Mao, X.S. Liu, M.J. Yang, X.H. Kong, M.D. Zhang, X.S. Kong, J. Guo, M.J. Chao, E.J. Liang, Ceram. Int. 42, 17004–17008 (2016)CrossRefGoogle Scholar
  14. 14.
    S.N. Shubin, A.B. Freidin, A.G. Akulichev, Arch. Appl. Mech. 86, 351–360 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Gao, N. Zhao, Q.Q. Liu, Y. Li, G.F. Xu, X.N. Chenga, J. Yang, J. Alloys. Compd. 779, 108–114 (2019)CrossRefGoogle Scholar
  16. 16.
    W.B. Song, E.J. Liang, X.S. Liu, Z.Y. Li, B.H. Yuan, J.Q. Wang, Chin. Phys. Lett. 30, 126502 (2013)CrossRefGoogle Scholar
  17. 17.
    J.R. Yang, Z.X. Liua, Y.J. Shi, M.J. Li, M.J. Yang, E.J. Liang, Ceram. Int. 45, 8750–8760 (2019)CrossRefGoogle Scholar
  18. 18.
    R. Shang, Q.L. Hu, X.S. Liu, E.J. Liang, B. Yuan, M.J. Chao, Int. J. Appl. Ceram. Technol. 10(5), 849–856 (2013)CrossRefGoogle Scholar
  19. 19.
    X.S. Liu, J.Q. Wang, C.Z. Fan, R. Shang, F.X. Cheng, B.H. Yuan, W.B. Song, Y.G. Chen, E.J. Liang, M.J. Chao, Int. J. Appl. Ceram. Technol. 12(S2), E28–E33 (2015)CrossRefGoogle Scholar
  20. 20.
    M.J. Yang, H. Wang, J. Guo, S.S. Wei, X.B. Tang, Y.J. Jiao, M.J. Chao, D.Z. Tian, E.J. Liang, J. Mater. Sci.: Mater. Electron. 30, 16621–16626 (2019)Google Scholar
  21. 21.
    Y.F. Qu, Functional Ceramics, 1st edn. (Chemical Industry Press, Beijing, 2003)Google Scholar
  22. 22.
    Z.J. Wang, M.H. Cao, Z.H. Yao, Z. Song, G.Y. Li, W. Hu, H. Hao, H.X. Liu, Ceram. Int. 40, 14127–14132 (2014)CrossRefGoogle Scholar
  23. 23.
    F.Z. Zeng, M.H. Cao, L. Zhang, M. Liu, H. Hao, Z.H. Yao, H.X. Liu, Ceram. Int. 43, 7710–7716 (2017)CrossRefGoogle Scholar
  24. 24.
    D. Popescu, B. Popescu, G. Jegert, S. Schmelze, IEEE. Trans. Electron. Dev. 61, 2130–2135 (2014)CrossRefGoogle Scholar
  25. 25.
    H.M. Yau, Z. Xi, X. Chen, Z. Wen, G. Wu, J.Y. Dai, Phys. Rev. B. 95, 214304 (2017)CrossRefGoogle Scholar
  26. 26.
    Z.F. Fu, J.L. Ma, P. Liu, Y. Liu, Mater. Chem. Phys. 200, 264–269 (2017)CrossRefGoogle Scholar
  27. 27.
    W.J. Bian, X.C. Lu, Y.Y. Li, C.F. Min, H.K. Zhu, Z.X. Fu, Q.T. Zhang, J. Mater. Sci.: Mater. Electron. 29, 2743–2747 (2018)Google Scholar
  28. 28.
    A. Tkach, O. Okhay, A. Almeidac, P.M. Vilarinhoa, Acta Mater. 130, 249–260 (2017)CrossRefGoogle Scholar
  29. 29.
    S.J. Cheon, J.H. Park, J.Y. Park, J. Electr. Eng. Technol. 7, 582–588 (2012)CrossRefGoogle Scholar
  30. 30.
    J.F.J.V. Zanten, G.A. Schuerink, A.H.J. Tullemans, R. Legtenberg, W.W. Wits, J. Mater. Sci.: Mater. Electron. 29, 4900–4914 (2018)Google Scholar
  31. 31.
    M. Naebe, J. Wang, Y.H. Xue, X.G. Wang, T. Lin, J. Appl. Polym. Sci. 118, 359–365 (2010)CrossRefGoogle Scholar
  32. 32.
    X.X. Chu, R.J. Huang, H.H. Yang, Z.X. Wu, J.F. Lu, Y. Zhou, L.F. Li, Mater. Sci. Eng., A 528, 3367–3374 (2011)CrossRefGoogle Scholar
  33. 33.
    J.I. Tani, M. Takahashi, H. Kido, J. Eur. Ceram. Soc. 30, 1483–1488 (2010)CrossRefGoogle Scholar
  34. 34.
    B. Feng, Y.C. Xin, Z. Sun, H.H. Yu, J. Wang, Q. Liu, Mater. Sci. Eng., A 704, 173–180 (2017)CrossRefGoogle Scholar
  35. 35.
    Q.Q. Liu, C.Y. Fan, G.D. Wu, Y.H. Zhao, X.J. Sun, X.N. Cheng, J.T. Shen, Y.M. Hu, Ceram. Int. 41, 8267–8271 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Das, S. Das, K. Das, Ceram. Int. 40, 6465–6472 (2014)CrossRefGoogle Scholar
  37. 37.
    R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 1–8 (2012)CrossRefGoogle Scholar
  38. 38.
    J.L. Li, F. Li, X.H. Zhu, D.B. Lin, Q.F. Li, W.H. Liu, Z. Xu, J. Alloys. Compd. 692, 375–380 (2017)CrossRefGoogle Scholar
  39. 39.
    G.K. Sidhu, R. Kumar, Appl. Surf. Sci. 392, 598–607 (2017)CrossRefGoogle Scholar
  40. 40.
    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)Google Scholar
  41. 41.
    K. Sarkaya, A. Demir, Polym. Bull. (2019).  https://doi.org/10.1007/s00289-018-2657-7 CrossRefGoogle Scholar
  42. 42.
    C. Fu, X.S. Wu, J.F. Cao, C.Y. Gu, W. Liu, Phys. B 573, 62–66 (2019)CrossRefGoogle Scholar
  43. 43.
    L. Liu, C.C. Wang, X.H. Sun, G.J. Wang, C.M. Lei, T. Li, J. Alloys. Compd. 552, 279–282 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Sural, A. Ghosh, J. Phys.: Condens. Matter 10, 10577–10586 (1998)Google Scholar
  45. 45.
    S.B. Aziz, W.O. Karim, K.W. Qadir, Q. Zafar, Int. J. Electro. chem. Sci. 13, 6112–6125 (2018)CrossRefGoogle Scholar
  46. 46.
    S.B. Aziz, OGh Abdullah, M.A. Rasheed, J. Mater. Sci.: Mater. Electron. 28, 2873 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Materials Physics of Ministry of Education, School of Physics and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.The 27th Research Institute of China Electronic Technology Group CorporationZhengzhouChina

Personalised recommendations