Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21477–21484 | Cite as

Remarkably improved uniform bipolar-resistive switching performance with a NiO buffer layer in Bi2SiO5 thin-film memory devices

  • Ruqi ChenEmail author
  • Wei Hu
  • Aize Hao
  • Dinghua BaoEmail author


Orthorhombic Bi2SiO5 thin films were fabricated on Pt/Ti/SiO2/Si substrates by incorporating a NiO thin layer between Bi2SiO5 and bottom electrode. Compared with those bare Pt/Bi2SiO5/Pt devices, a remarkably improved uniformity of resistive switching parameters such as electroforming voltages, reset voltages, and a resistance ratio of low/high states was demonstrated in the Bi2SiO5 devices with an embedded NiO layer. This improvement was attributed to the formation of the partial conductive filaments resulted from sufficient oxygen vacancies at the interface. Our results provide a method for the optimization of the operation voltage control toward forefront applications in nonvolatile memory.



The authors gratefully acknowledge financial support from National Natural Science Foundation of China (Nos. 51872335, 51372281) and Natural Science Foundation of Guangdong Province, China (No. 2015A030311019).


  1. 1.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)Google Scholar
  2. 2.
    W. Hu, N. Qin, G.H. Wu, Y. Lin, S.W. Li, D.H. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134, 14658–14661 (2012)Google Scholar
  3. 3.
    C. Gu, J.S. Lee, Flexible hybrid organic-inorganic perovskite memory. ACS Nano 10, 5413–5418 (2016)Google Scholar
  4. 4.
    R.Q. Chen, W. Hu, L.L. Zou, B.J. Li, D.H. Bao, Highly uniform resistive switching effect in amorphous Bi2O3 thin films fabricated by a low-temperature photochemical solution deposition method. Appl. Phys. A Mater. 120, 379–384 (2015)Google Scholar
  5. 5.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)Google Scholar
  6. 6.
    L.L. Zou, W. Hu, W. Xie, D.H. Bao, Uniform resistive switching properties of fully transparent TiO2-based memory devices. J. Alloys Compd. 693, 1180–1184 (2017)Google Scholar
  7. 7.
    D.H. Yoon, S.J. Kim, J. Jung, S.J. Heo, H.J. Kim, Effect of Hf incorporation in solution-processed NiOx based resistive random access memory. Appl. Phys. Lett. 104, 093508 (2014)Google Scholar
  8. 8.
    S. Gao, C. Chen, Z. Zhai, H.Y. Liu, Y.S. Lin, S.Z. Li, S.H. Lu, G.Y. Wang, C. Song, F. Zeng, F. Pan, Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories. Appl. Phys. Lett. 105, 063504 (2014)Google Scholar
  9. 9.
    A. Bera, H.Y. Peng, J. Lourembam, Y.D. Shen, X.W. Sun, T. Wu, A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 23, 4977–4984 (2013)Google Scholar
  10. 10.
    R.Q. Chen, W. Hu, L.L. Zou, W. Xie, B.J. Li, D.H. Bao, Multilevel resistive switching effect in sillenite structure Bi12TiO20 thin films. Appl. Phys. Lett. 104, 242111 (2014)Google Scholar
  11. 11.
    Q.Q. Lin, W. Hu, Z.G. Zang, M. Zhou, J. Du, M. Wang, S. Han, X.S. Tang, Transient resistive switching memory of CsPbBr3 thin films. Adv. Electron. Mater. 4, 1700596 (2018)Google Scholar
  12. 12.
    L. Chen, Y. Xu, Q.Q. Sun, H. Liu, J.J. Gu, S.J. Ding, D.W. Zhang, Highly uniform bipolar resistive switching with Al2O3 buffer layer in robust NbAlO-based RRAM. IEEE Electron. Dev. Lett. 31, 356–358 (2010)Google Scholar
  13. 13.
    D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, W. Hu, Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces. 9, 6171–6176 (2017)Google Scholar
  14. 14.
    H. Jiang, D.A. Stewart, Using dopants to tune oxygen vacancy formation in transition metal oxide resistive memory. ACS Appl. Mater. Interfaces. 9, 16296–16304 (2017)Google Scholar
  15. 15.
    J. Lee, E.M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, H. Hwang, Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications. Appl. Phys. Lett. 97, 172105 (2010)Google Scholar
  16. 16.
    L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Appl. Phys. Lett. 97, 243509 (2010)Google Scholar
  17. 17.
    G. Du, Z. Chen, Q. Mao, Z. Ji, Stable nonpolar resistive switching characteristics in Cu/Cu-dispersed ZrO2/Pt memory devices. Appl. Phys. Lett. 110, 093507 (2017)Google Scholar
  18. 18.
    M. Ismail, E. Ahmed, A.M. Rana, F. Hussain, I. Talib, M.Y. Nadeem, D. Panda, N.A. Shah, Improved endurance and resistive switching stability in ceria thin films due to charge transfer ability of Al dopant. ACS Appl. Mater. Interfaces. 8, 6127–6136 (2016)Google Scholar
  19. 19.
    Y. Li, S. Long, Q. Liu, H. Lv, M. Liu, Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 13, 1604306 (2017)Google Scholar
  20. 20.
    D.C. Kim, M.J. Lee, S.E. Ahn, S. Seo, J.C. Park, I.K. Yoo, I.G. Baek, H.J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, B.I. Ryu, Improvement of resistive memory switching in NiO using IrO2. Appl. Phys. Lett. 88, 232106 (2006)Google Scholar
  21. 21.
    Z. Wan, G. Zhang, Synthesis and facet-dependent enhanced photocatalytic activity of Bi2SiO5/AgI nanoplate photocatalysts. J. Mater. Chem. A 3, 16737–16745 (2015)Google Scholar
  22. 22.
    X.-J. Dai, Y.-S. Luo, S.-Y. Fu, W.-Q. Chen, Y. Lu, Facile hydrothermal synthesis of 3D hierarchical Bi2SiO5 nanoflowers and their luminescent properties. J. Solid State Sci. 12, 637–642 (2010)Google Scholar
  23. 23.
    D. Choi, C. Soo Kim, Coexistence of unipolar and bipolar resistive switching in Pt/NiO/Pt. Appl. Phys. Lett. 104, 193507 (2014)Google Scholar
  24. 24.
    M. Guo, Y. Chen, C. Lin, Y. Chang, B. Fowler, Q. Li, J. Lee, Y. Zhao, Unidirectional threshold resistive switching in Au/NiO/Nb: SrTiO3 devices. Appl. Phys. Lett. 110, 233504 (2017)Google Scholar
  25. 25.
    L. Zhang, W. Wang, S. Sun, J. Xu, M. Shang, J. Ren, Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Appl. Catal. B Environ. 100, 97–101 (2010)Google Scholar
  26. 26.
    R. Chen, J. Bi, L. Wu, W. Wang, Z. Li, X. Fu, Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets. Inorg. Chem. Commun. 48, 9072–9076 (2009)Google Scholar
  27. 27.
    S. Kim, S. Jung, M.-H. Kim, S. Cho, B.-G. Park, Resistive switching characteristics of Si3N4-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications. Appl. Phys. Lett. 106, 212106 (2015)Google Scholar
  28. 28.
    A.Z. Hao, M. Ismail, S. He, N. Qin, W.H. Huang, J. Wu, D.H. Bao, Improved unipolar resistive switching characteristics of Au-doped nickel ferrite magnetic thin films for nonvolatile memory applications. J. Alloys Compd. 732, 573–584 (2018)Google Scholar
  29. 29.
    U. Lüders, M. Bibes, J.-F. Bobo, M. Cantoni, R. Bertacco, J. Fontcuberta, Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films. Phys. Rev. B 71, 134419 (2005)Google Scholar
  30. 30.
    S. M. Yu, B. Gao, H. Dai, B. Sun, L.F. Liu, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Improved uniformity of resistive switching behaviors in HfO2 thin films with embedded Al layers. Electrochem. Solid-State Lett. 13, H36–H38 (2010)Google Scholar
  31. 31.
    J. Jang, H.-H. Choi, S.H. Paik, J.K. Kim, S. Chung, J.H. Park, Highly improved switching properties in flexible aluminum oxide resistive memories based on a multilayer device structure. Adv. Electron. Mater. 4, 1800355 (2018)Google Scholar
  32. 32.
    L. Gao, Y. Li, Q. Li, Z. Song, F. Ma, Enhanced resistive switching characteristics in Al2O3 memory devices by embedded Ag nanoparticles. Nanotechnology 28, 215201 (2017)Google Scholar
  33. 33.
    G.M. Lin, Y.W. Lin, R.L. Cui, H. Huang, X.H. Guo, C. Li, J.Q. Dong, X.F. Guo, B.Y. Sun, An organic-inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C 3, 10793–10798 (2015)Google Scholar
  34. 34.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)Google Scholar
  35. 35.
    K. Qian, R.Y. Tay, M.F. Lin, J. Chen, H. Li, J. Lin, J. Wang, G. Cai, V.C. Nguyen, E.H. Teo, T. Chen, P.S. Lee, Direct observation of indium conductive filaments in transparent, flexible, and transferable resistive switching memory. ACS Nano 11, 1712–1718 (2017)Google Scholar
  36. 36.
    J.S. Choi, J.S. Kim, I.R. Hwang, S.H. Hong, S.H. Jeon, S.O. Kang, B.H. Park, D.C. Kim, M.J. Lee, S. Seo, Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes. Appl. Phys. Lett. 95, 022109 (2009)Google Scholar
  37. 37.
    W. Hu, L.L. Zou, X.G. Lin, C. Gao, Y.C. Guo, D.H. Bao, Unipolar resistive switching effect and mechanism of solution-processed spinel Co3O4 thin films. Mater. Des. 103, 230–235 (2016)Google Scholar
  38. 38.
    R.Q. Chen, M.M. Lao, J. Xu, C.D. Xu, Uniform bipolar resistive switching behaviors in BiFeO3 thin films on Fe-doped LaNiO3 electrodes. Appl. Phys. Express 7, 095801 (2014)Google Scholar
  39. 39.
    W. Zhou, R. Yang, H.-K. He, H.-M. Huang, J. Xiong, X. Guo, Optically modulated electric synapses realized with memristors based on ZnO nanorods. Appl. Phys. Lett. 113, 061107 (2018)Google Scholar
  40. 40.
    H.-L. Yuan, J.-C. Li, Effect of bending on resistive switching of NiO/ZnO nanocomposite thin films. J. Alloys Compd. 709, 752–759 (2017)Google Scholar
  41. 41.
    G. Milano, S. Porro, M.Y. Ali, K. Bejtka, S. Bianco, F. Beccaria, A. Chiolerio, C.F. Pirri, C. Ricciardi, Unravelling resistive switching mechanism in ZnO NW arrays: the role of the polycrystalline base layer. J. Phys. Chem. C 122, 866–874 (2017)Google Scholar
  42. 42.
    X. Shen, Y.S. Puzyrev, S.T. Pantelides, Vacancy breathing by grain boundaries-a mechanism of memristive switching in polycrystalline oxides. MRS Commun. 3, 167–170 (2013)Google Scholar
  43. 43.
    C. Dou, K. Kakushima, P. Ahmet, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, H. Iwai, Resistive switching behavior of a CeO2 based ReRAM cell incorporated with Si buffer layer. Microelectron. Reliab. 52, 688–691 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Experimental Teaching for Common Basic CoursesSouth China Agricultural UniversityGuangzhouChina
  2. 2.State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhouChina
  3. 3.Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqingChina

Personalised recommendations