Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21369–21376 | Cite as

Fatigue-free dielectric capacitor with giant energy density based on lead-free Na0.5Bi0.5TiO3-based film

  • Yajie Han
  • Jin Qian
  • Changhong YangEmail author


Lead-free inorganic dielectric film capacitors have ignited plenty of interest in developing the dielectric energy storage. Here, we obtained a 0.5 mol% Ce and 2 mol% Mn-codoped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 [(Ce,Mn):NBT–BT] ceramic film capacitor on Pt/TiO2/SiO2/Si substrate, which has a significantly improved recoverable energy storage density Wrec ~ 64.2 J/cm3 and efficiency η ~ 68.1% at 2105 kV/cm. The film capacitor exhibits superior frequency stability with small gradient of 5.9% for Wrec in the frequency range of 500 Hz to 20 kHz, and excellent cycling reliability over 108 charge–discharge cycles without fatigue deterioration. Besides, the (Ce,Mn):NBT–BT film capacitor has large discharged energy density of 43.0 J/cm3 at 1579 kV/cm and fast discharging speed of 55.1 μs tested by a resistance–capacitance circuit with a load resistor of 100 kΩ. These findings indicate that the (Ce,Mn):NBT–BT film might be promising lead-free dielectrics for energy storage applications.



This work was supported by the National Natural Science Foundation of China (No. 51972144), Shandong Provincial Natural Science Foundation of China (ZR2017LEM008) and the Key R&D Program of Shandong Province (2019GGX102015).


  1. 1.
    L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.-F. Li, S.J. Zhang, Prog. Mater. Sci. 102, 72–108 (2019)Google Scholar
  2. 2.
    Y. Shen, X. Zhang, M. Li, Y.H. Lin, C.-W. Nan, Natl. Sci. Rev. 4, 23–25 (2017)Google Scholar
  3. 3.
    B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334–336 (2006)Google Scholar
  4. 4.
    Z. Liu, T. Lu, J.M. Ye, G.S. Wang, X.L. Dong, R. Withers, Y. Liu, Adv. Mater. Technol. 3, 1800111 (2018)Google Scholar
  5. 5.
    Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)Google Scholar
  6. 6.
    C.H. Yang, P.P. Lv, J. Qian, Y.J. Han, J. Ouyang, X.J. Lin, S.F. Huang, Z.X. Cheng, Adv. Energy Mater. 9, 1803949 (2019)Google Scholar
  7. 7.
    Y.L. Zhang, W.L. Li, W.P. Cao, Y. Feng, Y.L. Qiao, T.D. Zhang, W.D. Fei, Appl. Phys. Lett. 110, 243901 (2017)Google Scholar
  8. 8.
    H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, J. Ma, L.L. Li, C.-W. Nan, J. Mater. Chem. A 5, 5920–5926 (2017)Google Scholar
  9. 9.
    J.L. Li, F. Li, Z. Xu, S.J. Zhang, Adv. Mater. 30, 1802155 (2018)Google Scholar
  10. 10.
    H. Pan, J. Ma, J. Ma, Q.H. Zhang, X.Z. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L.L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Nat. Commun. 9, 1813 (2018)Google Scholar
  11. 11.
    B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, X.R. Zeng, H.T. Huang, ACS Appl. Mater. Interfaces 7, 13512–13517 (2015)Google Scholar
  12. 12.
    C.H. Yang, Y.J. Han, J. Qian, Z.X. Cheng, Adv. Electron. Mater. 5, 1900443 (2019)Google Scholar
  13. 13.
    G.-T. Hwang, H. Park, J.-H. Lee, S. Oh, K.-I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, S.-G. Lee, B. Joung, K.J. Lee, Adv. Mater. 26, 4880–4887 (2014)Google Scholar
  14. 14.
    T. Takenaka, K. Maruyama, L. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)Google Scholar
  15. 15.
    A. Andreia, N.D. Scarisoreanua, R. Birjegaa, M. Dinescua, G. Stanciub, F. Craciunc, C. Galassid, Appl. Surf. Sci. 278, 162–165 (2013)Google Scholar
  16. 16.
    J.B. Babu, M. He, D.F. Zhang, X.L. Chen, R. Dhanasekaran, Appl. Phys. Lett. 90, 102901 (2007)Google Scholar
  17. 17.
    B. Liu, B. Lu, X.Q. Chen, X. Wu, S.J. Shi, L. Xu, Y. Liu, F.F. Wang, X.Y. Zhao, W.Z. Shi, J. Mater. Chem. A 5, 23634 (2017)Google Scholar
  18. 18.
    C. Ma, X. Tan, J. Am. Ceram. Soc. 94, 4040–4044 (2011)Google Scholar
  19. 19.
    Y.P. Guo, Y. Liu, R.L. Withers, F. Brink, H. Chen, Chem. Mater. 23, 219–228 (2011)Google Scholar
  20. 20.
    C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 108, 104105 (2010)Google Scholar
  21. 21.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91, 3950–3954 (2008)Google Scholar
  22. 22.
    M.L. Liu, H.F. Zhu, Y.X. Zhang, C.H. Xue, J. Ouyang, Materials 9, 935 (2016)Google Scholar
  23. 23.
    X.H. Hao, J. Adv. Dielect. 3, 1330001 (2013)Google Scholar
  24. 24.
    G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)Google Scholar
  25. 25.
    C.H. Yang, Y.J. Han, X.S. Sun, J. Chen, J. Qian, L.X. Chen, Ceram. Int. 44, 6330–6336 (2018)Google Scholar
  26. 26.
    T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)Google Scholar
  27. 27.
    S. Zhang, M.J. Han, J.Z. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, ACS Appl. Mater. Interfaces 5, 3191–3198 (2013)Google Scholar
  28. 28.
    M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, J. Eur. Ceram. Soc. 28, 843–849 (2008)Google Scholar
  29. 29.
    B.T. Song, C.T. Wu, J. Chang, Acta Biomater. 8, 1901–1907 (2012)Google Scholar
  30. 30.
    S.W. Wang, H. Wang, X.M. Wu, S.X. Shang, M. Wang, Z.F. Li, W. Lu, J. Cryst, Growth 224, 323–326 (2001)Google Scholar
  31. 31.
    P.X. Miao, Y.G. Zhao, N.N. Luo, D.Y. Zhao, A.T. Chen, Z. Sun, M.Q. Guo, M.H. Zhu, H.Y. Zhang, Q. Li, Sci. Rep. UK 6, 19965 (2016)Google Scholar
  32. 32.
    A.Z. Simões, M.A. Ramírez, C.S. Riccardi, A.H.M. Gonzalez, E. Longo, J.A. Varela, Mater. Chem. Phys. 98, 203–206 (2006)Google Scholar
  33. 33.
    Q.R. Lin, R. Ding, Q. Li, Y.Y. Tay, D.Y. Wang, Y. Liu, Y.Z. Huang, S. Li, J. Am. Ceram. Soc. 99, 2347–2353 (2016)Google Scholar
  34. 34.
    P. Chen, B.J. Chu, J. Eur. Ceram. Soc. 36, 81–88 (2016)Google Scholar
  35. 35.
    Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 94, 3877–3882 (2011)Google Scholar
  36. 36.
    M. Rahimabady, S.T. Chen, K. Yao, F.E.H. Tay, L. Lu, Appl. Phys. Lett. 99, 142901 (2011)Google Scholar
  37. 37.
    A. Lahmar, J. Belhadi, M. El Marssi, M. Zannen, H. Khemakhem, IEEE International Conference in Energy and Sustainability in Small Developing Economies, Dubai, United Arab Emirates, August 2017Google Scholar
  38. 38.
    Y.L. Zhang, W.L. Li, W.P. Cao, T.D. Zhang, T.R.G.L. Bai, Y. Yu, Y.F. Hou, Y. Feng, W.D. Fei, Ceram. Int. 42, 14788–14792 (2016)Google Scholar
  39. 39.
    Z.S. Liang, M. Liu, C.R. Ma, L.K. Shen, L. Lu, C.-L. Jia, J. Mater. Chem. A 6, 12291 (2018)Google Scholar
  40. 40.
    B.B. Yang, M.Y. Guo, D.P. Song, X.W. Tang, R.H. Wei, L. Hu, J. Yang, W.H. Song, J.M. Dai, X.J. Lou, X.B. Zhu, Y.P. Sun, Appl. Phys. Lett. 111, 183903 (2017)Google Scholar
  41. 41.
    Z.S. Xu, X.H. Hao, S.L. An, J. Alloys Compd. 639, 387–392 (2015)Google Scholar
  42. 42.
    C.H. Yang, Y.J. Han, J. Qian, P.P. Lv, X.J. Lin, S.F. Huang, Z.X. Cheng, ACS Appl. Mater. Interfaces 11, 12647–12655 (2019)Google Scholar
  43. 43.
    Q.L. Fan, M. Liu, C.R. Ma, L.X. Wang, S.P. Ren, L. Lu, X.J. Lou, C.-L. Jia, Nano Energy 51, 539–545 (2018)Google Scholar
  44. 44.
    J.H. Wang, N.N. Sun, Y. Li, Q.W. Zhang, X.H. Hao, X.J. Chou, Ceram. Int. 43, 7804–7809 (2017)Google Scholar
  45. 45.
    C.W. Ahn, G. Amarsanaa, S.S. Won, S.A. Chae, D.S. Lee, I.W. Kim, ACS Appl. Mater. Interfaces 7, 26381–26386 (2015)Google Scholar
  46. 46.
    Z.S. Liang, M. Liu, L.K. Shen, L. Lu, C.R. Ma, X.L. Lu, X.J. Lou, C.-L. Jia, ACS Appl. Mater. Interfaces 11, 5247–5255 (2019)Google Scholar
  47. 47.
    Z.H. Tang, J. Ge, H. Ni, B. Lu, X.-G. Tang, S.-G. Lu, M.H. Tang, J. Gao, J. Alloy Compd. 757, 169–176 (2018)Google Scholar
  48. 48.
    Q.M. Zhang, C. Li, H.W. Liu, Q. Tang, J.F. Liu, H.T. Li, M. Wang, W.P. Xie, J. Du, J. Am. Ceram. Soc. 98, 366–369 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsUniversity of JinanJinanChina
  2. 2.School of Materials Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations