Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21278–21287 | Cite as

Hyperthermia properties of NixFe3−xO4 nanoparticles: a first-order reversal curve investigation

  • Ahmad Reza Yasemian
  • Mohammad Almasi KashiEmail author
  • Abdolali Ramazani


Magnetic nanoparticles (NPs) studied in hyperthermia investigations have shown promising results in combating tumors and slowing cancerous growth. However, no attention has been paid to hyperthermia properties of nickel ferrite NPs with different compositions. Herein, we synthesize NixFe3−xO4 (0 ≤ x ≤ 1) NPs using a co-precipitation method, followed by the investigation of their structural, magnetic, and hyperthermia properties. According to room-temperature hysteresis loop results, the complete replacement of Fe cations by Ni2+ ions leads to a reduction in the saturation magnetization (Ms) from 55.40 to 19.30 emu/g, and an increase in the coercive field (Hc) from 7.33 to 71.40 Oe. Moreover, first-order reversal curve analysis reveals a reduction in the respective superparamagnetic fraction from 77 to 29% when increasing the Ni concentration (x) from 0 to 1. The results on magnetic hyperthermia properties show that Ni0.6Fe2.4O4 and Ni0.8Fe2.2O4 NPs have highest heating efficiency, giving rise to specific loss power values of 170.5 and 169 W/g in a water medium with a concentration of 3 mg/ml, and 200.5 and 198.4 W/g for a concentration of 1.5 mg/ml, respectively.





Specific loss power


First-order reversal curve




Field-emission scanning electron microscopy


Coercive field


Saturation magnetization


Anisotropy constant



The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No. 159023/59.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596 (1957)Google Scholar
  2. 2.
    U. Gneveckow, A. Jordan, R. Scholz, V. Brüß, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, P. Wust, Description and characterization of the novel hyperthermia-and thermoablation-system for clinical magnetic fluid hyperthermia. Med. Phys. 31(6), 1444–1451 (2004)Google Scholar
  3. 3.
    A. Tomitaka, J-i Jo, I. Aoki, Y. Tabata, Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflamm. Regen. 34(1), 045–055 (2014)Google Scholar
  4. 4.
    A. Tomitaka, Y. Takemura, Measurement of specific loss power from intracellular magnetic nanoparticles for hyperthermia. J. Pers. Nanomed. 1(1), 33–37 (2015)Google Scholar
  5. 5.
    M.A. Abakumov, N.V. Nukolova, M. Sokolsky-Papkov, S.A. Shein, T.O. Sandalova, H.M. Vishwasrao, N.F. Grinenko, I.L. Gubsky, A.M. Abakumov, A.V. Kabanov, VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11(4), 825–833 (2015)Google Scholar
  6. 6.
    S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004)Google Scholar
  7. 7.
    J.-P.A.A. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37(2), 223–228 (2008)Google Scholar
  8. 8.
    H.M. Joshi, Y.P. Lin, M. Aslam, P. Prasad, E.A. Schultz-Sikma, R. Edelman, T. Meade, V.P. Dravid, Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009)Google Scholar
  9. 9.
    A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)Google Scholar
  10. 10.
    A.B. Salunkhe, V.M. Khot, S. Pawar, Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr. Top. Med. Chem. 14(5), 572–594 (2014)Google Scholar
  11. 11.
    L. Delaunay, S. Neveu, G. Noyel, J. Monin, A new spectrometric method, using a magneto-optical effect, to study magnetic liquids. J. Magn. Magn. Mater. 149(3), L239–L245 (1995)Google Scholar
  12. 12.
    R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)Google Scholar
  13. 13.
    I. Obaidat, B. Issa, Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1), 63–89 (2015)Google Scholar
  14. 14.
    Z. Nemati, J. Alonso, L. Martinez, H. Khurshid, E. Garaio, J. Garcia, M. Phan, H. Srikanth, Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C 120(15), 8370–8379 (2016)Google Scholar
  15. 15.
    L.-Y. Lu, L.-N. Yu, X.-G. Xu, Y. Jiang, Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications. Rare Met. 32(4), 323–331 (2013)Google Scholar
  16. 16.
    Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017)Google Scholar
  17. 17.
    R. Betancourt-Galindo, O. Ayala-Valenzuela, L. Garcia-Cerda, O.R. Fernandez, J. Matutes-Aquino, G. Ramos, H. Yee-Madeira, Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles. J. Magn. Magn. Mater. 294(2), e33–e36 (2005)Google Scholar
  18. 18.
    G. Salazar-Alvarez, R.T. Olsson, J. Sort, W.A. Macedo, J.D. Ardisson, M.D. Baró, U.W. Gedde, J. Nogués, Enhanced coercivity in co-rich near-stoichiometric CoxFe3-xO4+ δ nanoparticles prepared in large batches. Chem. Mater. 19(20), 4957–4963 (2007)Google Scholar
  19. 19.
    H. Le Trong, A. Barnabé, L. Presmanes, P. Tailhades, Phase decomposition study in CoxFe3−xO4 iron cobaltites: synthesis and structural characterization of the spinodal transformation. Solid State Sci. 10(5), 550–556 (2008)Google Scholar
  20. 20.
    L. Hu, C. De Montferrand, Y. Lalatonne, L. Motte, A. Brioude, Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse CoxFe3–xO4 nanoparticles within nonpolar and aqueous solvents. J. Phys. Chem. C 116(7), 4349–4355 (2012)Google Scholar
  21. 21.
    R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2(29), 5944–5953 (2014)Google Scholar
  22. 22.
    L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Monolayer assembly of ferrimagnetic CoxFe3–xO4 nanocubes for magnetic recording. Nano Lett. 14(6), 3395–3399 (2014)Google Scholar
  23. 23.
    A.M. Wahba, M.B. Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3−xO4 ferrites. J. Magn. Magn. Mater. 378, 246–252 (2015)Google Scholar
  24. 24.
    E. Fantechi, C. Innocenti, M. Albino, E. Lottini, C. Sangregorio, Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. J. Magn. Magn. Mater. 380, 365–371 (2015)Google Scholar
  25. 25.
    J. Mohapatra, M. Xing, J.P. Liu, Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange. AIP Adv. 8(5), 056725 (2018)Google Scholar
  26. 26.
    S. Bae, S.W. Lee, Y. Takemura, Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl. Phys. Lett. 89(25), 252503 (2006)Google Scholar
  27. 27.
    S. Larumbe, C. Gomez-Polo, J. Pérez-Landazábal, A. García-Prieto, J. Alonso, M. Fdez-Gubieda, D. Cordero, J. Gómez, Ni doped Fe3O4 magnetic nanoparticles. J. Nanosci. Nanotechnol. 12(3), 2652–2660 (2012)Google Scholar
  28. 28.
    M.I. Nugraha, P. Noorlaily, M. Abdullah, F. Iskandar (eds.) Synthesis of NixFe3-xO4 nanoparticles by microwave-assisted coprecipitation and their application in viscosity reduction of heavy oil. Materials Science Forum, Trans Tech Publications (2013)Google Scholar
  29. 29.
    Y. Xia, B. Wang, G. Wang, X. Liu, H. Wang, MOF-derived porous NixFe3-xO4 nanotubes with excellent performance in lithium-ion batteries. ChemElectroChem. 3(2), 299–308 (2016)Google Scholar
  30. 30.
    X. Sun, X. Zhang, P. Wang, M. Yang, J. Ma, Z. Ding, B. Geng, M. Wang, Y. Ma, Evolution of structure and magnetism from NixFe3−xO4 (x = 0, 0.5, 1 and 1.5) to Ni-Fe alloys and to Ni-Fe-N. Mater. Res. Bull. 95, 261–266 (2017)Google Scholar
  31. 31.
    K. Jiang, Y. Liu, Y. Pan, R. Wang, P. Hu, R. He, L. Zhang, G. Tong, Monodisperse NixFe3-xO4 nanospheres: metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties. Appl. Surf. Sci. 404, 40–48 (2017)Google Scholar
  32. 32.
    Y. Yunas, W.A. Adi, M. Mashadi, P.A. Rahmy, Magnetic and microwave absorption properties of nickel ferrite (NixFe3-xO4) by HEM technique. Malays. J. Fundam. Appl. Sci. 13(3), 203–206 (2017)Google Scholar
  33. 33.
    M. Phadatare, J. Meshram, K. Gurav, J.H. Kim, S. Pawar, Enhancement of specific absorption rate by exchange coupling of the core–shell structure of magnetic nanoparticles for magnetic hyperthermia. J. Phys. D 49(9), 0950040.0 (2016)Google Scholar
  34. 34.
    V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)Google Scholar
  35. 35.
    P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018)Google Scholar
  36. 36.
    Y. Slimani, M. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F.B. Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45(2), 2621–2628 (2019)Google Scholar
  37. 37.
    A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. Solid Earth 105(B12), 28461–28475 (2000)Google Scholar
  38. 38.
    M. Winklhofer, R.K. Dumas, K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first-and second-order reversal curves. J. Appl. Phys. 103(7), 07C518 (2008)Google Scholar
  39. 39.
    S. Samanifar, M. Alikhani, M.A. Kashi, A. Ramazani, A. Montazer, Magnetic alloy nanowire arrays with different lengths: insights into the crossover angle of magnetization reversal process. J. Magn. Magn. Mater. 430, 6–15 (2017)Google Scholar
  40. 40.
    M. Mouallem-Bahout, S. Bertrand, O. Pena, Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178(4), 1080–1086 (2005)Google Scholar
  41. 41.
    M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28(8), 1455–1458 (2009)Google Scholar
  42. 42.
    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46(12), 2208–2211 (2011)Google Scholar
  43. 43.
    G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, W. Weitschies, The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18(38), S2935 (2006)Google Scholar
  44. 44.
    A. Goldman, Modern Ferrite Technology (Springer, Cham, 2006)Google Scholar
  45. 45.
    G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighianet, Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 6–9 (2010)Google Scholar
  46. 46.
    R. Kambale, P. Shaikh, S. Kamble, Y. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478(1–2), 599–603 (2009)Google Scholar
  47. 47.
    M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116(12), 124304 (2014)Google Scholar
  48. 48.
    B. Mehdaoui, R. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, M. Respaud, Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys. Rev. B 87(17), 174419 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nanoscience and Nanotechnology, University of KashanKashanIran
  2. 2.Department of PhysicsUniversity of KashanKashanIran
  3. 3.Department of Basic Science, Faculty of Shahid RajaeeTechnical and Vocational University (TVU)IsfahanIran

Personalised recommendations