Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21250–21258 | Cite as

Hydrothermal synthesis of ZnWO4–MnO2 nanopowder doped with carbon black nanoparticles for high-performance supercapacitor applications

  • Aqib Muzaffar
  • M. Basheer AhamedEmail author
  • Kalim Deshmukh


A two-step hydrothermal method was employed to synthesize ZnWO4–MnO2 nanopowder with a high degree of crystallinity as revealed by X-ray diffraction studies. The synthesized nanopowder exhibits nanorod-type structure as revealed by high-resolution transmission microscopy with selected area electron diffraction pattern, confirming the crystalline behaviour. The electrochemical behaviour of the symmetrically fabricated electrodes using ZnWO4–MnO2 as active materials along with doped carbon black was investigated by means of cyclic voltammetry (CV), galvanostatic charge/discharge profiling and electrochemical impedance spectroscopy in the potential window of 0–1 V. The electrochemical analysis was carried out using 2 M KOH electrolyte. The fabricated electrodes showed better electrochemical behaviour with maximum specific capacitance of 714 F g−1 at a scan rate of 5 mV s−1 as demonstrated by CV curves. The capacitance obtained from CV measurements depicts dominant electrostatic double layer behaviour. The maximum specific capacitance of 690.6 F g−1 at a current density of 1 A g−1 was attained from charge/discharge profiling. In addition, the electrodes showed an energy density of 289.17 Wh kg−1 at a power density of 547.90 W kg−1 at the same current density. Furthermore, after undergoing 5000 charging/discharging cycles, the fabricated electrodes retained 94.5% of its initial capacity, thereby yielding Coulombic efficiency of 81.7%.



  1. 1.
    A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145 (2019)Google Scholar
  2. 2.
    H. Song, X. Li, Y. Zhang, H. Wang, H. Li, J. Huang, A nanocomposite of needle-like MnO2 nanowires arrays sandwiched between graphene nanosheets for supercapacitors. Ceram. Int. 40(1), 1251–1255 (2014)Google Scholar
  3. 3.
    S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, S. Kundu, Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg. Chem. 54(8), 3851–3863 (2015)Google Scholar
  4. 4.
    A. Muzaffar, K. Muthusamy, M.B. Ahamed, Ferrous nitrate-nickel oxide (Fe (NO3) 2–NiO) nanospheres incorporated with carbon black and polyvinylidenefluoride for supercapacitor applications. J. Electrochem. Energy Convers. Storage 16(3), 031008 (2019)Google Scholar
  5. 5.
    L. Huang, W. Zhang, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core-shell NiCO2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016)Google Scholar
  6. 6.
    A. Muzaffar, M.B. Ahamed, Iron molybdate and manganese dioxide microrods as a hybrid structure for high-performance supercapacitor applications. Ceram. Int. 45(3), 4009–4015 (2019)Google Scholar
  7. 7.
    Z. Amouzegar, R. Naghizadeh, H.R. Rezaie, M. Ghahari, M. Aminzare, Microwave engineering of ZnWO4 nanostructures: towards morphologically favorable structures for photocatalytic activity. Ceram. Int. 41(7), 8352–8359 (2015)Google Scholar
  8. 8.
    S.S. Thind, X. Chang, J.S. Wentzell, A. Chen, High-performance supercapacitor based on tantalum iridium oxides supported on tungsten oxide nanoplatelets. Electrochem. Commun. 67, 1–5 (2016)Google Scholar
  9. 9.
    G. Zhou, J. Zhu, Y. Chen, L. Mei, X. Duan, G. Zhang, L. Chen, T. Wang, B. Lu, Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim. Acta 123, 450–455 (2014)Google Scholar
  10. 10.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)Google Scholar
  11. 11.
    M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1), 72–88 (2013)Google Scholar
  12. 12.
    Y. Deng, Y. Xie, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4(4), 1144–1173 (2016)Google Scholar
  13. 13.
    S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)Google Scholar
  14. 14.
    M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, N. Wu, Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustain. Chem. Eng. 2(7), 1592–1598 (2014)Google Scholar
  15. 15.
    M. Daud, M.S. Kamal, F. Shehzad, M.A. Al-Harthi, Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104, 241–252 (2016)Google Scholar
  16. 16.
    K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7), 7451–7457 (2014)Google Scholar
  17. 17.
    Y.S. Lim, Y.P. Tan, H.N. Lim, N.M. Huang, W.T. Tan, M.A. Yarmo, C.Y. Yin, Potentiostatically deposited polypyrrole/graphene decorated nano-manganese oxide ternary film for supercapacitors. Ceram. Int. 40(3), 3855–3864 (2014)Google Scholar
  18. 18.
    P.C. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4(8), 4403–4411 (2010)Google Scholar
  19. 19.
    J.F. Gao, W.B. Zhang, Z.Y. Zhao, L.B. Kong, Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N. Sustain. Energy Fuels 2(6), 1178–1188 (2018)Google Scholar
  20. 20.
    B.J. Rani, G. Ravi, S. Ravichandran, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, Electrochemically active X WO 4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications. Appl. Nanosci. 8(5), 1–18 (2018)Google Scholar
  21. 21.
    S.P. Lim, N.M. Huang, H.N. Lim, Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram. Int. 39(6), 6647–6655 (2013)Google Scholar
  22. 22.
    J.W. Lee, J.H. Koh, Grain size effects on the dielectric properties of CaCu3Ti4O12 ceramics for supercapacitor applications. Ceram. Int. 41(9), 10442–10447 (2015)Google Scholar
  23. 23.
    J. Liu, D. Xue, Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater. 20(13), 2622–2627 (2008)Google Scholar
  24. 24.
    Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, R. Han, Y. Wang, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode. Ceram. Int. 40(3), 4109–4116 (2014)Google Scholar
  25. 25.
    R.D. Kumar, S. Karuppuchamy, Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications. Ceram. Int. 40(8), 12397–12402 (2014)Google Scholar
  26. 26.
    R.E.N.Z.H.I. Ma, Y. Bando, L.I.A.N.Q.I. Zhang, T. Sasaki, Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16(11), 918–922 (2004)Google Scholar
  27. 27.
    C.Y. Chen, S.C. Wang, C.Y. Lin, F.S. Chen, C.K. Lin, Electrophoretically deposited manganese oxide coatings for supercapacitor application. Ceram. Int. 35(8), 3469–3474 (2009)Google Scholar
  28. 28.
    Z.P. Diao, Y.X. Zhang, X.D. Hao, Z.Q. Wen, Facile synthesis of CoAl-LDH/MnO2 hierarchical nanocomposites for high-performance supercapacitors. Ceram. Int. 40(1), 2115–2120 (2014)Google Scholar
  29. 29.
    R. Liu, E. Liu, R. Ding, K. Liu, Y. Teng, Z. Luo, Z. Li, T. Hu, T. Liu, Facile in situ redox synthesis of hierarchical porous activated carbon@ MnO2 core/shell nanocomposite for supercapacitors. Ceram. Int. 41(10), 12734–12741 (2015)Google Scholar
  30. 30.
    Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008)Google Scholar
  31. 31.
    W.L. Suchanek, R.E. Riman, Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006)Google Scholar
  32. 32.
    D. Jugović, D. Uskoković, A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J. Power Sources 190(2), 538–544 (2009)Google Scholar
  33. 33.
    X. Wang, Y. Li, Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)Google Scholar
  34. 34.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO 4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016)Google Scholar
  35. 35.
    F.S. Wen, X. Zhao, H. Huo, J.S. Chen, E. Shu-Lin, J.H. Zhang, Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4. Mater. Lett. 55(3), 152–157 (2002)Google Scholar
  36. 36.
    T. Dong, Z. Li, Z. Ding, L. Wu, X. Wang, X. Fu, Characterizations and properties of Eu3+-doped ZnWO4 prepared via a facile self-propagating combustion method. Mater. Res. Bull. 43(7), 1694–1701 (2008)Google Scholar
  37. 37.
    B. Guan, L. Hu, G. Zhang, D. Guo, T. Fu, J. Li, H. Duan, C. Li, Q. Li, Facile synthesis of ZnWO 4 nanowall arrays on Ni foam for high performance supercapacitors. RSC Adv. 4(9), 4212–4217 (2014)Google Scholar
  38. 38.
    S. Zhan, F. Zhou, N. Huang, Q. He, Y. Zhu, Deactivating harmful marine microorganisms through photoelectrocatalysis by GO/ZnWO4 electrodes. Chem. Eng. J. 330, 635–643 (2017)Google Scholar
  39. 39.
    Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9), 2917–2925 (2011)Google Scholar
  40. 40.
    L. Xie, Y. Liu, H. Bai, C. Li, B. Mao, L. Sun, W. Shi, Core-shell structured ZnCo2O4@ ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 531, 64–73 (2018)Google Scholar
  41. 41.
    K. Xiao, J.W. Li, G.F. Chen, Z.Q. Liu, N. Li, Y.Z. Su, Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochim. Acta 149, 341–348 (2014)Google Scholar
  42. 42.
    Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011)Google Scholar
  43. 43.
    M. Harmas, T. Thomberg, T. Romann, A. Jänes, E. Lust, Carbon for energy storage derived from granulated white sugar by hydrothermal carbonization and subsequent zinc chloride activation. J. Electrochem. Soc. 164(9), A1866–A1872 (2017)Google Scholar
  44. 44.
    W. Xiao, H. Xia, J.Y. Fuh, L. Lu, Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 193(2), 935–938 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  2. 2.New Technologies - Research CenterUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations