Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21210–21218 | Cite as

Fabrication, characterization, and photocatalytic activity of anatase/rutile/SnO2 nanocomposites

  • Xiaodong Zhu
  • Ranran Zhu
  • Lingxiu Pei
  • Hui Liu
  • Li Xu
  • Jing Wang
  • Wei FengEmail author
  • Yu Jiao
  • Wanming ZhangEmail author
Article
  • 38 Downloads

Abstract

Anatase/rutile/SnO2 nanocomposites have been synthesized through a sol–gel method. The crystal structure, surface morphology, chemical valence, specific surface area, and optical property of the samples were investigated by XRD, Raman, SEM, TEM, HRTEM, XPS, BET, DRS, and PL analyses. The addition of Sn promotes the phase transition from anatase to rutile. The formed anatase/rutile/SnO2 three-phase coexistence structure is beneficial to the separation of photogenerated pairs and the decrease of band gap. The photocatalytic behavior of photocatalysts was studied via the photodegradation of MB solution under xenon lamp irradiation. With the increase of Sn concentration, the photocatalytic performance of TiO2/SnO2 is improved, and all TiO2/SnO2 photocatalytic activities are higher than pure TiO2. 32%Sn–TiO2 (32%ST) exhibits the highest photocatalytic activity and the MB has been completely photodegraded in 30 min.

Notes

Acknowledgements

This project was supported financially by the Applied Basic Research Programs of Sichuan Province (Grant Nos. 2019JY0664, 2018JY0062), the Open Research Subject of Powder Metallurgy Engineering Technology Research Center of Sichuan Province (Grant Nos. SC-FMYJ2017-03, SC-FMYJ2018-02) and the Training Program for Innovation of Chengdu University, China (Grant Nos. CDU-CX-2019015, CDU-CX-2019020).

References

  1. 1.
    K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Ceram. Int. 43, 973–981 (2017)Google Scholar
  2. 2.
    A. Shafei, M.E. Salarpour, S. Sheibani, J. Sol–Gel Sci. Technol. 92, 173–185 (2019)Google Scholar
  3. 3.
    Y.J. Si, H.H. Liu, N.T. Li, J.B. Zhong, J.Z. Li, D.M. Ma, Mater. Lett. 212, 147–150 (2018)Google Scholar
  4. 4.
    P. Esparza, T. Hernández, M.E. Borges, M.C. Álvarez-Galván, J.C. Ruiz-Morales, J.L.G. Fierro, Catal. Today 210, 135–141 (2013)Google Scholar
  5. 5.
    P. Benjwal, B. De, K.K. Kar, Appl. Surf. Sci. 427, 262–272 (2018)Google Scholar
  6. 6.
    J.F. Chen, J.B. Zhong, J.Z. Li, J. Zeng, S.T. Huang, L. Dou, J. Sol–Gel Sci. Technol. 76, 332–340 (2015)Google Scholar
  7. 7.
    M. Khan, Z. Yi, S.R. Gul, U. Fawad, W. Muhammad, J. Phys. Chem. Solids 110, 241–247 (2017)Google Scholar
  8. 8.
    W.C. Huang, J.M. Ting, Ceram. Int. 43, 9992–9997 (2017)Google Scholar
  9. 9.
    X. Wang, X.J. Wang, J.F. Zhao, J.K. Song, L.J. Zhou, J.Y. Wang, X. Tong, Y.S. Chen, Appl. Catal. B-Environ. 206, 479–489 (2017)Google Scholar
  10. 10.
    X.H. Li, Y. Wu, Y.H. Shen, Y. Sun, Y. Yang, A.J. Xie, Appl. Surf. Sci. 427, 739–744 (2018)Google Scholar
  11. 11.
    J.V. Hernández, S. Coste, A.G. Murillo, F.C. Romo, A. Kassiba, J. Alloy. Compd. 710, 355–363 (2017)Google Scholar
  12. 12.
    J.H. Kong, C.X. Song, W. Zhang, Y.H. Xiong, M. Wan, Y.Q. Wang, Superlattice Microstruct. 109, 579–587 (2017)Google Scholar
  13. 13.
    C. Shen, K.X. Pang, L. Du, G.S. Luo, Particuology 34, 103–109 (2017)Google Scholar
  14. 14.
    S.M. Adyani, M. Ghorbani, J. Rare Earth 36, 72–85 (2018)Google Scholar
  15. 15.
    S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Ceram. Int. 44, 6201–6211 (2018)Google Scholar
  16. 16.
    F. Du, X.Q. Zuo, Q. Yang, B. Yang, G. Li, Z.L. Ding, M.Z. Wu, Y.Q. Ma, S.W. Jin, K.R. Zhu, Ceram. Int. 42, 12778–12782 (2016)Google Scholar
  17. 17.
    A. Marzec, M. Radecka, W. Maziarz, A. Kusior, Z. Pedzich, J. Eur. Ceram. Soc. 36, 2981–2989 (2016)Google Scholar
  18. 18.
    M.N. Huang, S.H. Yu, B. Li, L.H. Dong, F.Y. Zhang, M.G. Fan, L. Wang, J.H. Yu, C.S. Deng, Ceram. Int. 40, 13305–13312 (2014)Google Scholar
  19. 19.
    S.M. Patil, A.G. Dhodamani, S.A. Vanalakar, S.P. Deshmukh, S.D. Delekar, J. Phys. Chem. Solids 115, 127–136 (2018)Google Scholar
  20. 20.
    Z.L. Yang, J. Lu, W.C. Ye, C.S. Yu, Y.L. Chang, Appl. Surf. Sci. 392, 472–480 (2017)Google Scholar
  21. 21.
    A. Tiwari, I. Mondal, S. Ghosh, N. Chattopadhyay, U. Pal, Phys. Chem. Chem. Phys. 18, 15260–15268 (2016)Google Scholar
  22. 22.
    V. Likodimos, A. Chrysi, M. Calamiotou, C. Fernández-Rodríguez, J.M. Dona-Rodríguez, D.D. Dionysiou, P. Falaras, Appl. Catal. B-Environ. 192, 242–252 (2016)Google Scholar
  23. 23.
    P.F. Wang, J.C. Wu, Y.H. Ao, C. Wang, J. Hou, J. Qian, Mater. Lett. 65, 3278–3280 (2011)Google Scholar
  24. 24.
    A.K. Alves, F.A. Berutti, C.P. Bergmann, Catal. Today 208, 7–10 (2013)Google Scholar
  25. 25.
    C.C. Jia, T. Dong, M. Li, P. Wang, P. Yang, J. Alloy. Compd. 769, 521–531 (2018)Google Scholar
  26. 26.
    T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 6, 321–324 (1978)Google Scholar
  27. 27.
    A. Charanpahari, S.S. Umare, S.P. Gokhale, V. Sudarsan, B. Sreedhar, R. Sasikala, Appl. Catal. A-Gen. 443–444, 96–102 (2012)Google Scholar
  28. 28.
    C.C. Jia, H.S. Chen, P. Yang, J. Ind. Eng. Chem. 58, 278–289 (2018)Google Scholar
  29. 29.
    K.T. Lee, C.H. Lin, S.Y. Lu, J. Phys. Chem. C 118, 14457–14463 (2014)Google Scholar
  30. 30.
    X. Fan, J. Wan, E.Z. Liu, L. Sun, Y. Hu, H. Li, X.Y. Hu, J. Fan, Ceram. Int. 41, 5107–5116 (2015)Google Scholar
  31. 31.
    S. Demirci, T. Dikici, M. Yurddaskal, S. Gultekin, M. Toparli, E. Celik, Appl. Surf. Sci. 390, 591–601 (2016)Google Scholar
  32. 32.
    O. Avilés-García, J. Espino-Valencia, R. Romero, J.L. Rico-Cerda, M. Arroyo-Albiter, R. Natividad, Fuel 198, 31–41 (2017)Google Scholar
  33. 33.
    Q.H. Tian, J.B. Yan, L. Yang, J.Z. Chen, Electrochim. Acta 282, 38–47 (2018)Google Scholar
  34. 34.
    M. Dorraj, M. Alizadeh, N.A. Sairi, W.J. Basirun, B.T. Goh, P.M. Woi, Y. Alias, Appl. Surf. Sci. 414, 251–261 (2017)Google Scholar
  35. 35.
    F.E. Oropeza, B. Davies, R.G. Palgrave, R.G. Egdell, Phys. Chem. Chem. Phys. 13, 7882–7891 (2011)Google Scholar
  36. 36.
    T.K. Jia, F. Fu, D.S. Yu, J.L. Cao, G. Sun, Appl. Surf. Sci. 430, 438–447 (2018)Google Scholar
  37. 37.
    H.B. Jiang, J. Xing, Z.P. Chen, F. Tian, Q. Cuan, X.Q. Gong, H.G. Yang, Catal. Today 225, 18–23 (2014)Google Scholar
  38. 38.
    Y. Chen, K.R. Liu, J. Hazard. Mater. 324, 139–150 (2017)Google Scholar
  39. 39.
    R.M. Mohamed, E.S. Aazam, J. Alloy. Compd. 595, 8–13 (2014)Google Scholar
  40. 40.
    B.D. Yan, Y. Zhuang, Y.L. Jiang, W. Xu, Y.J. Chen, J.C. Tu, X.H. Wang, Q. Wu, Appl. Surf. Sci. 458, 382–388 (2018)Google Scholar
  41. 41.
    H.W. Cho, K.L. Liao, J.S. Yang, J.J. Wu, Appl. Surf. Sci. 440, 125–132 (2018)Google Scholar
  42. 42.
    L. Ping, J.J. Wang, T. Peng, Y. Wang, J.J. Liang, D.Q. Pan, Appl. Surf. Sci. 483, 670–676 (2019)Google Scholar
  43. 43.
    H.T. Xun, Z.B. Zhang, A.H. Yu, J.X. Yi, Sensor. Actuator B-Chem. 273, 983–990 (2018)Google Scholar
  44. 44.
    H. Cao, S.L. Huang, Y.L. Yu, Y.B. Yan, Y.K. Lv, Y.A. Cao, J. Colloid Interface Sci. 486, 176–183 (2017)Google Scholar
  45. 45.
    B. Appavu, S. Thiripuranthagan, J. Photochem. Photobiol. A 340, 146–156 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical EngineeringChengdu UniversityChengduChina
  2. 2.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina
  3. 3.College of ScienceXichang UniversityXichangChina

Personalised recommendations