Advertisement

Modified CdS quantum dots as selective turn-on fluorescent nanosensor for detection and determination of methamphetamine

  • Majid Masteri-FarahaniEmail author
  • Nazanin Mosleh
Article
  • 5 Downloads

Abstract

Surface modification of cadmium sulfide quantum dots (CdS-QDs) with anti-methamphetamine (anti-METH) antibody produced a new turn-on fluorescent nanosensor, anti-METH-CdS-QDs, for detection of methamphetamine. The anti-METH-CdS-QDs nanosensor was obtained readily via the covalent conjugation of mercaptoacetic acid capped CdS-QDs with anti-METH in the presence of N-ethyl-N′-(3-dimethylaminopropyl carbodiimide) (EDC) and Sulfo-N-hydroxysuccinimide (Sulfo-NHS) as coupling agents. The results of FT-IR and energy dispersive X-ray (EDX) spectroscopies confirmed the functionalization of CdS-QDs with anti-METH species. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses revealed the crystal phase and microstructure of CdS-QDs in the anti-METH-CdS-QDs. The obtained anti-METH-CdS-QDs exhibited fluorescence enhancement upon addition of methamphetamine molecules which allowed the highly sensitive and selective determination of methamphetamine with detection limit of 0.006 mg/L. Further studies disclosed that this nanosensor has little interaction with other drugs such as codeine and ibuprofen. Hence, it can be utilized as simple, inexpensive, and selective nanosensor for determination of methamphetamine in low concentrations.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of Kharazmi University.

Supplementary material

10854_2019_2490_MOESM1_ESM.jpg (451 kb)
Supplementary material 1 (JPEG 451 kb)

References

  1. 1.
    S. Pathak, S.-K. Choi, N. Arnheim, M.E. Thompson, J. Am. Chem. Soc. 123, 4103–4104 (2001)CrossRefGoogle Scholar
  2. 2.
    H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, M.G. Bawendi, J. Am. Chem. Soc. 122, 12142–12150 (2000)CrossRefGoogle Scholar
  3. 3.
    D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, W.W. Web, Science 300, 1434–1436 (2003)CrossRefGoogle Scholar
  4. 4.
    S. Cao, J. Zheng, J. Zhao, Z. Yang, M. Shang, C. Li, W. Yang, X. Fang, Adv. Funct. Mater. 26, 7224–7233 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Fang, L. Hu, C. Ye, L. Zhang, Pure Appl. Chem. 82, 2185–2198 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, Science 298, 1759–1762 (2002)CrossRefGoogle Scholar
  7. 7.
    A.M. Dennis, W.J. Rhee, D. Sotto, S.N. Dublin, G. Bao, ACS Nano 6, 2917–2924 (2012)CrossRefGoogle Scholar
  8. 8.
    H.S. Mansur, A.A. Mansur, J. González, Polymer 52, 1045–1054 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, Nat. Biotechnol. 22, 969 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Han, X. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631 (2001)CrossRefGoogle Scholar
  11. 11.
    D. Geißler, L.J. Charbonnière, R.F. Ziessel, N.G. Butlin, H.G. Löhmannsröben, N. Hildebrandt, Angew. Chem. Int. Ed. 49, 1396–1401 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Hu, C.-Y. Wen, Z.-L. Zhang, M. Xie, J. Hu, M. Wu, D.-W. Pang, Anal. Chem. 85, 11929–11935 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Panagiotopoulou, Y. Salinas, S. Beyazit, S. Kunath, L. Duma, E. Prost, A.G. Mayes, M. Resmini, B. Tse Sum Bui, K. Haupt, Angew. Chem. Int. Ed. 55, 8244–8248 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Ming, J. Kim, M.J. Biondi, A. Syed, K. Chen, A. Lam, M. Ostrowski, A. Rebbapragada, J.J. Feld, W.C. Chan, ACS Nano 9, 3060–3074 (2015)CrossRefGoogle Scholar
  15. 15.
    H.S. Afsari, M.C. Dos Santos, S. Lindén, T. Chen, X. Qiu, P.M.V.B. en Henegouwen, T.L. Jennings, K. Susumu, I.L. Medintz, N. Hildebrandt, Sci. Adv. 2, e1600265 (2016)CrossRefGoogle Scholar
  16. 16.
    W.R. Algar, A. Khachatrian, J.S. Melinger, A.L. Huston, M.H. Stewart, K. Susumu, J.B. Blanco-Canosa, E. Oh, P.E. Dawson, I.L. Medintz, J. Am. Chem. Soc. 139, 363–372 (2016)CrossRefGoogle Scholar
  17. 17.
    G.B. Kim, Y.-P. Kim, Theranostics 2, 127 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Tang, L. Du, X. Su, Food Chem. 141, 4060–4065 (2013)CrossRefGoogle Scholar
  19. 19.
    K.F. Chou, A.M. Dennis, Sensors 15, 13288–13325 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Saha, A.D. Roy, D. Dey, D. Bhattacharjee, S.A. Hussain, Mater. Today 5, 2306–2313 (2018)Google Scholar
  21. 21.
    I.L. Medintz, J. Konnert, A. Clapp, I. Stanish, M. Twigg, H. Mattoussi, J.M. Mauro, J. Deschamps, Proc. Natl. Acad. Sci. USA 101, 9612–9617 (2004)CrossRefGoogle Scholar
  22. 22.
    I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, J.M. Mauro, Nat. Mater. 2, 630 (2003)CrossRefGoogle Scholar
  23. 23.
    D.M. Willard, L.L. Carillo, J. Jung, A. Van Orden, Nano Lett. 1, 469–474 (2001)CrossRefGoogle Scholar
  24. 24.
    Y. Wu, Y.-P. Ho, Y. Mao, X. Wang, B. Yu, K.W. Leong, L.J. Lee, Mol. Pharm. 8, 1662–1668 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Masteri-Farahani, K. Khademabbasi, N. Mollatayefeh, Mater. Lett. 228, 68–71 (2018)CrossRefGoogle Scholar
  26. 26.
    C. Zhang, Y. Han, L. Lin, N. Deng, B. Chen, Y. Liu, J. Agric. Food Chem. 65, 1290–1295 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Masteri-Farahani, F. Askari, Spectrochim. Acta A 206, 448–453 (2019)CrossRefGoogle Scholar
  28. 28.
    M. Rezazadeh, Y. Yamini, S. Seidi, J. Chromatogr. A 1396, 1–6 (2015)CrossRefGoogle Scholar
  29. 29.
    A.M. El-Didamony, M.Z. Saad, N.O. Saleem, Main Group Chem. 13, 175–186 (2014)Google Scholar
  30. 30.
    K. Kuwayama, K. Tsujikawa, H. Miyaguchi, T. Kanamori, Y.T. Iwata, H. Inoue, Anal. Bioanal. Chem. 402, 1257–1267 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Matyus, G. Kocsis, O. Boldis, G. Karvaly, E. Magyar, J. Fűrész, A. Gachályi, Acta Chromatogr. 24, 351–365 (2012)CrossRefGoogle Scholar
  32. 32.
    T. Mahdy, T.H. El-Shihi, M.M. Emara, S. Chericoni, M. Giusiani, M. Giorgi, J. Anal. Toxicol. 36, 548–559 (2012)CrossRefGoogle Scholar
  33. 33.
    J.M. Jones, M.D. Raleigh, P.R. Pentel, T.M. Harmon, D.E. Keyler, R.P. Remmel, A.K. Birnbaum, J. Pharm. Biomed. Anal. 74, 291–297 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Ghassabian, S.M. Moosavi, Y.G. Valero, K. Shekar, J.F. Fraser, M.T. Smith, J. Chromatogr. B 903, 126–133 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Sproll, R.C. Perz, D.W. Lachenmeier, J. Agric. Food Chem. 54, 5292–5298 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Ruzilawati, W.W. Yusuf, N. Ramli, Z. Hussain, A. Rasool, Int. J. Pharm. Sci. Drug Res. 5, 18–22 (2013)Google Scholar
  37. 37.
    S. Seidi, Y. Yamini, A. Heydari, M. Moradi, A. Esrafili, M. Rezazadeh, Anal. Chim. Acta 701, 181–188 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Ebrahimi Rahmani, M. Ansari, M. Kazemipour, M. Nateghi, J. Sep. Sci. 41, 958–965 (2018)CrossRefGoogle Scholar
  39. 39.
    T.A. Isbell, E.C. Strickland, J. Hitchcock, G. McIntire, C.L. Colyer, J. Chromatogr. B 980, 65–71 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Rodriguez, G. Castaneda, L. Munoz, S. López, Anal. Methods 6, 3842–3848 (2014)CrossRefGoogle Scholar
  41. 41.
    N.-T. Chen, S.-H. Cheng, C.-P. Liu, J.S. Souris, C.-T. Chen, C.-Y. Mou, L.-W. Lo, Int. J. Mol. Sci. 13, 16598–16623 (2012)CrossRefGoogle Scholar
  42. 42.
    J. García-Fernández, L. Trapiella-Alfonso, J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, J. Agric. Food Chem. 62, 1733–1740 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Ding, J. Chen, H. Jiang, J. He, W. Shi, W. Zhao, J. Shen, J. Agric. Food Chem. 54, 6139–6142 (2006)CrossRefGoogle Scholar
  44. 44.
    R. Jackeray, C.Z. Abid, G. Singh, S. Jain, S. Chattopadhyaya, S. Sapra, T. Shrivastav, H. Singh, Talanta 84, 952–962 (2011)CrossRefGoogle Scholar
  45. 45.
    N. Tajarrod, M.K. Rofouei, M. Masteri-Farahani, R. Zadmard, Anal. Methods 8, 5911–5920 (2016)CrossRefGoogle Scholar
  46. 46.
    A.R. Clapp, I.L. Medintz, J.M. Mauro, B.R. Fisher, M.G. Bawendi, H. Mattoussi, J. Am. Chem. Soc. 126, 301–310 (2004)CrossRefGoogle Scholar
  47. 47.
    A. Aboulaich, D. Billaud, M. Abyan, L. Balan, J.-J. Gaumet, G. Medjadhi, J. Ghanbaja, R. Schneider, ACS Appl. Mater. Interfaces 4, 2561–2569 (2012)CrossRefGoogle Scholar
  48. 48.
    D.K. Nomura, T.J. Maimone, Target identification of bioactive covalently acting natural products, Current Topics in Microbiology and Immunology (Springer, Berlin, 2018)Google Scholar
  49. 49.
    C.-Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V.S.-Y. Lin, J. Am. Chem. Soc. 125, 4451–4459 (2003)CrossRefGoogle Scholar
  50. 50.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627–637 (1966)CrossRefGoogle Scholar
  51. 51.
    M.A. McCooeye, Z. Mester, B. Ells, D.A. Barnett, R.W. Purves, R. Guevremont, Anal. Chem. 74, 3071–3075 (2002)CrossRefGoogle Scholar
  52. 52.
    M.K. Woźniak, M. Wiergowski, J. Aszyk, P. Kubica, J. Namieśnik, M. Biziuk, J. Pharm. Biomed. Anal. 148, 58–64 (2018)CrossRefGoogle Scholar
  53. 53.
    A.J. Krotulski, A.L. Mohr, M. Friscia, B.K. Logan, J. Anal. Toxicol. 42, 170–176 (2017)CrossRefGoogle Scholar
  54. 54.
    Y. Makino, Biomed. Chromatogr. 26, 327–330 (2012)Google Scholar
  55. 55.
    P. Saar-Reismaa, E. Erme, M. Vaher, M. Kulp, M. Kaljurand, J. Mazina-Šinkar, Anal. Chem. 90, 6253–6258 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryKharazmi UniversityTehranIslamic Republic of Iran

Personalised recommendations