Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21096–21105 | Cite as

Experimental and theoretical studies of CuInS2 thin films for photovoltaic applications

  • Ahmed KotbiEmail author
  • Bouchaib Hartiti
  • Salah Fadili
  • Abderraouf Ridah
  • Philippe Thevenin
Article
  • 38 Downloads

Abstract

CuInS2 thin films were synthesized by spray pyrolysis. The films were characterized using X-ray diffraction, Raman spectroscopy, and spectrophotometer (UV–Vis). The structural studies reveal that CuInS2 thin films are of chalcopyrite phase. The complex dielectric constants (εr and εi), the refractive index (n), extinction coefficient (k), absorption coefficient (α), gap energy (Eg), and the optical conductivity (σ) were calculated. The obtained results are suitable for photovoltaic applications. To confirm our experimental results, a series of Ab initio calculations was performed. The generalized gradient approximation and the mBJ potential for the exchange–correlation potential have been used to calculate the band structure, density of states, charge density, and optical properties of CuInS2.

Notes

Acknowledgements

Prof. Bouchaib HARTITI, Senior Associate at ICTP (The Abdus Salam International Center for Theoretical Physics), is very grateful to ICTP for financial support. We thank P. Blaha and K. Schwarz for the Wien2k code.

References

  1. 1.
    M. Ajili, M. Castagn, N.K. Turki, Characteristics of CuIn1−xGaxS2 thin films synthesized by chemical spray pyrolysis. J. Lumin. 150, 1–7 (2014).  https://doi.org/10.1016/j.jlumin.2013.12.059 CrossRefGoogle Scholar
  2. 2.
    S. Vadivel, K. Srinivasan, K.R. Murali, Pulse electrodeposited copper indium sulfide films. Mater. Sci. Semicond. Process. 16, 765–770 (2013).  https://doi.org/10.1016/j.mssp.2012.12.024 CrossRefGoogle Scholar
  3. 3.
    J.L. Shay, J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. Pergamon, Oxford (1975). https://www.elsevier.com/books/ternarychalcopyrite-semiconductors-growth-electronic-properties-andapplications/shay/978-0-08017883-7 CrossRefGoogle Scholar
  4. 4.
    M.A. Sangamesha, K. Pushpalatha, G.L. Shekar, Effect of Co doping on CIS2 thin films. Chin. J. Phys. 56, 1147–1157 (2018).  https://doi.org/10.1016/j.cjph.2018.04.019 CrossRefGoogle Scholar
  5. 5.
    I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja, A. Goossens, Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films 480–481, 82–86 (2005).  https://doi.org/10.1016/j.tsf.2004.11.013 CrossRefGoogle Scholar
  6. 6.
    F. Aslan, M.Z. Zarbali, B. Yesilata, J.H. Mutlu, Effects of Cu/In ratio and annealing temperature on physical properties of dip-coated CuInS2 thin films. Mater. Sci. Semicond. Process. 16, 138–142 (2013).  https://doi.org/10.1016/j.mssp.2012.05.015 CrossRefGoogle Scholar
  7. 7.
    Hung-Hua Sheu, Yu-Tien Hsu, Shun-Yi Jian, Shih-Chang Liang, The effect of Cu concentration in the photovoltaic efficiency of CIGS solar cells prepared by co-evaporation technique. Vacuum 131, 278–284 (2016).  https://doi.org/10.1016/j.vacuum.2016.07.008 CrossRefGoogle Scholar
  8. 8.
    Hsien-Chung Huang, Chao-Sung Lin, Wei-Che Chang, Electrodeposition of CIS films on the Mo back electrodes with different crystallinities. Electrochim. Acta 75, 20–27 (2012).  https://doi.org/10.1016/j.electacta.2012.04.162 CrossRefGoogle Scholar
  9. 9.
    Kai Siemer, Jo Klaer, Ilka Luck, Jurgen Bruns, Reiner Klenk, Dieter Braunig, Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol. Energy Mater. Sol. Cells 67, 159–166 (2001).  https://doi.org/10.1016/S0927-0248(00)00276-2 CrossRefGoogle Scholar
  10. 10.
    C. Mahendran, N. Suriyanarayanan, Effect of Bi incorporation and temperature on the properties of sprayed CuInS2 thin films. Phys. B 408, 62–67 (2013).  https://doi.org/10.1016/j.physb.2012.08.045 CrossRefGoogle Scholar
  11. 11.
    M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67–98 (1999).  https://doi.org/10.1016/S0010-4655(98)00201-X CrossRefGoogle Scholar
  12. 12.
    M.D. Feit, J.A. Fleck Jr., A. Steiger, Solution of the Schrodinger equation by a spectral method. J. Comput. Phys. 47, 412–433 (1982).  https://doi.org/10.1016/0021-9991(82)90091-2 CrossRefGoogle Scholar
  13. 13.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, revised edition WIEN2k 18.2 (Release 07/17/2018), ISBN 3-9501031-1-2. http://susi.theochem.tuwien.ac.at/reguser/textbooks/usersguide.pdf
  14. 14.
    P. Dufek, P. Blaha, K. Schwarz, Theoretical investigation of the pressure-induced metallization and the collapse of the antiferromagnetic states in NiI2. Phys. Rev. B 51, 4122–4127 (1995).  https://doi.org/10.1103/PhysRevB.51.4122 CrossRefGoogle Scholar
  15. 15.
    M. Yousaf, M.A. Saeed, A.R.M. Isa, H.A.R. Aliabad, M.R. Sahar, An insight into the structural, electronic and transport characteristics of XIn2S4 (X = Zn, Hg) thiospinels using a highly accurate all-electron FPLAPW + Lo method. Chin. Phys. Lett. 30(077402), 1–5 (2013).  https://doi.org/10.1088/0256-307X/30/7/077402 CrossRefGoogle Scholar
  16. 16.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  17. 17.
    Dong-Yeup Lee, SeJun Park, JunHo Kim, Structural analysis of CIGS film prepared by chemical spray deposition. Curr. Appl. Phys. 11, S88–S92 (2011).  https://doi.org/10.1016/j.cap.2010.11.089 CrossRefGoogle Scholar
  18. 18.
    C. Mahendran, N. Suriyanarayanan, Synthesis and characterization of sprayed Zn-doped polycrystalline CuInS2 thin films. Optik 124, 5089–5094 (2013).  https://doi.org/10.1016/j.ijleo.2013.03.034 CrossRefGoogle Scholar
  19. 19.
    K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337–343 (2013).  https://doi.org/10.1016/j.mssp.2012.09.016 CrossRefGoogle Scholar
  20. 20.
    M. Sahal, B. Mar, M. Mollar, CuInS2 thin films obtained by spray pyrolysis for photovoltaic applications. Thin Solid Films 517, 2202–2204 (2009).  https://doi.org/10.1016/j.tsf.2008.10.131 CrossRefGoogle Scholar
  21. 21.
    T. Gurel, R. Eryigit, Adiabatic bond charge model for lattice dynamics of ternary chalcopyrite semiconductors. Cryst. Res. Technol. 41, 83–91 (2006).  https://doi.org/10.1002/crat.200410536 CrossRefGoogle Scholar
  22. 22.
    F.W. Ohrendorf, H. Haeuseler, Lattice dynamics of chalcopyrite type compounds. Part III. Rigid ion model calculations. Cryst. Res. Technol. 34, 363–378 (1999).  https://doi.org/10.1002/(SICI)1521-4079(199903)34:3<363::AID-CRAT363>3.0.CO;2-Q CrossRefGoogle Scholar
  23. 23.
    A.V. Kopytov, A.V. Kosobutsky, Ab initio calculations of the vibrational spectra of AgInSe2 and AgInTe2. Phys. Solid State 51, 2115–2120 (2009).  https://doi.org/10.1134/S1063783409100217 CrossRefGoogle Scholar
  24. 24.
    Wu Kunjie, Deliang Wang, Temperature-dependent Raman investigation of CuInS2 with mixed phases of chalcopyrite and CuAu. Phys. Status Solidi A 208, 2730–2736 (2011).  https://doi.org/10.1002/pssa.201127262 CrossRefGoogle Scholar
  25. 25.
    V. Jayalakshmi, S. Davapriya, R. Murugan, B. Palanivel, Electronic structure and structural phase stability of CuAlX2 (X = S, Se, Te) under pressure. J. Phys. Chem. Solids 67, 669–674 (2006).  https://doi.org/10.1016/j.jpcs.2005.08.092 CrossRefGoogle Scholar
  26. 26.
    M. Benabdeslem, H. Sehli, S. Rahal, N. Benslim, L. Bechiri, A. Djekoun, T. Touam, M. Boujnah, A. El Kenz, A. Benyoussef, X. Portier, Ab initio calculations and experimental properties of CuAlxGa1−xTe2 for photovoltaic solar cells. J. Electron. Mater. 45, 1035–1040 (2016).  https://doi.org/10.1007/s11664-015-4215-5 CrossRefGoogle Scholar
  27. 27.
    P. Nayebi, K. Mirabbaszadeh, M. Shamshirsaz, Structural and electronic properties of CuInS2 nanowire: a study of density functional theory. Comput. Mater. Sci. 89, 198–204 (2014).  https://doi.org/10.1016/j.commatsci.2014.03.060 CrossRefGoogle Scholar
  28. 28.
    Y. Wang, W. Liu, H. Chen, X. Chen, C. Liu, G. Zhuang, R. Wang, F. Shen, H. Wang, H. Xiaoyan, Z. Miao, First principles study on band structure and optical properties of N-doped CuAlO2. Phys. B 545, 167–171 (2018).  https://doi.org/10.1016/j.physb.2018.06.007 CrossRefGoogle Scholar
  29. 29.
    J.O. Akinlami, G.A. Adebayo, M.O. Omeike, J.A. Akindiilete, L.O. Abdulfatai, Electronic properties and the phonon band structure of PbTe. Comput. Condens. Matter 15, 90–94 (2018).  https://doi.org/10.1016/j.cocom.2017.10.005 CrossRefGoogle Scholar
  30. 30.
    S. Sharma, A.S. Verma, R. Bhandari, S. Kumari, V.K. Jindal, Ab initio studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgAlX2: X = S, Se). Mater. Sci. Semicond. Process. 26, 187–198 (2014).  https://doi.org/10.1016/j.mssp.2014.04.036 CrossRefGoogle Scholar
  31. 31.
    X. Hou, K.-L. Choy, Synthesis and characteristics of CuInS2 films for photovoltaic application. Thin Solid Films 480–481, 13–18 (2005).  https://doi.org/10.1016/j.tsf.2004.11.014 CrossRefGoogle Scholar
  32. 32.
    T. Yamamoto, K. Fukuzaki, S. Kohiki, Influence of incorporation of Na on p-type CuInS2 thin films. Appl. Surf. Sci. 159–160, 345–349 (2000).  https://doi.org/10.1016/S0169-4332(00)00123-9 CrossRefGoogle Scholar
  33. 33.
    H. Bouafia, B. Sahli, M.A. Timaoui, B. Djebour, S. Hiadsi, B. Abidri, Structural stability and electronic behaviors of Co1−xOsxSi and macroscopic magnetic susceptibilities of CoSi and OsSi: GGA-PBEsol. GW-approximation and QTAIM investigations. Phys. B 530, 167–176 (2018).  https://doi.org/10.1016/j.physb.2017.11.045 CrossRefGoogle Scholar
  34. 34.
    K.M. Wong, M. Irfan, A. Mahmood, G. Murtaza, First principles study of the structural and optoelectronic properties of the A2InSbO6 (A = Ca, Sr, Ba) compounds. Optik 130, 517–524 (2017).  https://doi.org/10.1016/j.ijleo.2016.10.139 CrossRefGoogle Scholar
  35. 35.
    L. Pauling, The nature of the chemical bond: an introduction to modern structural chemistry, 3rd edition. Cornell University Press, New York (1960). https://www.amazon.co.uk/NatureChemical-Bond-Introduction-Non-Resident/dp/0801403332
  36. 36.
    M. Boujnah, O. Dakir, H. Zaari, A. Benyoussef, A. El Kenz, Optoelectronic response of spinels CdX2O4 with X = (Al, Ga, In) through the modified Becke-Johnson functional. J. Appl. Phys. 116(123703), 1–7 (2014).  https://doi.org/10.1063/1.4896110 CrossRefGoogle Scholar
  37. 37.
    X. Bin, X. Li, Z. Qin, C. Long, D. Yang, J. Sun, L. Yi, Electronic and optical properties of CuGaS2: first-principles calculations. Phys. B 406, 946–951 (2011).  https://doi.org/10.1016/j.physb.2010.12.034 CrossRefGoogle Scholar
  38. 38.
    H. Bennacer, A. Boukortt, S. Meskine, M. Hadjab, M.I. Ziane, A. Zaoui, First principles investigation of optoelectronic properties of ZnXP2 (X = Si, Ge) lattice matched with silicon for tandem solar cells applications using the mBJ exchange potential. Optik 159, 229–244 (2018).  https://doi.org/10.1016/j.ijleo.2018.01.079 CrossRefGoogle Scholar
  39. 39.
    N.M. Ravindra, P. Ganapathy, J. Choi, Energy gap-refractive index relations in semiconductors: an overview. Infrared Phys. Technol. 50, 21–29 (2007).  https://doi.org/10.1016/j.infrared.2006.04.001 CrossRefGoogle Scholar
  40. 40.
    M. Hadjab, S. Berrah, H. Abid, M.I. Ziane, H. Bennacer, B.G. Yalcin, Full-potential calculations of structural and optoelectronic properties of cubic indium gallium arsenide semiconductor alloys. Optik 127, 9280–9294 (2016).  https://doi.org/10.1016/j.ijleo.2016.07.018 CrossRefGoogle Scholar
  41. 41.
    A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, O.Y. Khyzhun, Electronic structure and optical properties of RbPb2Br5. J. Phys. Chem. Solids 91, 25–33 (2016).  https://doi.org/10.1016/j.jpcs.2015.12.003 CrossRefGoogle Scholar
  42. 42.
    A. Ghosh, R. Thangavel, M. Rajagopalan, Electronic and optical modeling of solar cell compound CuXY2 (X = In, Ga, Al; Y = S, Se, Te): first-principles study via Tran-Blaha-modified BeckeJohnson exchange potential approach. J. Mater. Sci. 50, 1710–1717 (2015).  https://doi.org/10.1007/s10853-014-8732-z CrossRefGoogle Scholar
  43. 43.
    B. Amin, R. Khenata, A. Bouhemadou, I. Ahmad, M. Maqbool, Opto-electronic response of spinels MgAl2O4 and MgGa2O4 through modified Becke–Johnson exchange potential. Phys. B 407, 2588–2592 (2012).  https://doi.org/10.1016/j.physb.2012.03.075 CrossRefGoogle Scholar
  44. 44.
    M. Hadjab, S. Berrah, H. Abid, M.I. Ziane, H. Bennacer, A.H. Reshak, First-principles investigation of the optical properties for rocksalt mixed metal oxide MgxZn1−xO. Mater. Chem. Phys. 182, 182–189 (2016).  https://doi.org/10.1016/j.matchemphys.2016.07.021 CrossRefGoogle Scholar
  45. 45.
    F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolylhydrazone ligand. Opt. Mater. 27, 1363–1368 (2005).  https://doi.org/10.1016/j.optmat.2004.09.021 CrossRefGoogle Scholar
  46. 46.
    A. Rajeswari, G. Vinitha, P. Murugakoothan, Investigation on optical, thermal, mechanical, dielectric and ferroelectric properties of non linear optical single crystal guanidinium manganese sulphate. J. Mater. Sci. 29(15), 12526–12535 (2018).  https://doi.org/10.1007/s10854-018-9352-1 CrossRefGoogle Scholar
  47. 47.
    A.I. Arbab, On the optical conductivity. Optik 194, 163067 (2019).  https://doi.org/10.1016/j.ijleo.2019.163067 CrossRefGoogle Scholar
  48. 48.
    J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975)Google Scholar
  49. 49.
    V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.-L. Lazzari, F. Arnaud d’Avitaya, Ab initio modeling of the structural, electronic, and optical properties of AIIBIVC2V semiconductors. Phys. Rev. B 85, 205201 (2012).  https://doi.org/10.1103/PhysRevB.85.205201 CrossRefGoogle Scholar
  50. 50.
    A.D. Martinez, B.R. Ortiz, N.E. Johnson, L.L. Baranowski, L. Krishna, S. Choi, P.C. Dippo, B. To, A.G. Norman, P. Stradins, V. Stevanović, E.S. Toberer, A.C. Tamboli, Development of ZnSiP2 for Si-based tandem solar cells. IEEE J. Photovolt. 5(1), 17–21 (2014).  https://doi.org/10.1109/jphotov.2014.2362305 CrossRefGoogle Scholar
  51. 51.
    M.B. Rabeh, M. Kanzari, Optical constants of Zn-doped CuInS2 thin films. Thin Solid Films 519(21), 7288–7291 (2011).  https://doi.org/10.1016/j.tsf.2011.01.139 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ERDyS Laboratory, GMEEMDD Group, FSTMHassan II Casablanca UniversityMohammediaMorocco
  2. 2.LIMAT Laboratory, Department of Physics, FSBHassan II Casablanca UniversityCasablancaMorocco
  3. 3.The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
  4. 4.LMOPS Laboratory, Department of PhysicsUniversity of LorraineMetzFrance

Personalised recommendations