Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21089–21095 | Cite as

Effects of embedded SiO2 nanoparticles on the moisture barrier performance of inorganic/organic laminates

  • Fan Sun
  • Guixiong Chen
  • Xiongtu ZhouEmail author
  • Chaoxing Wu
  • Lei Sun
  • Qun Yan
  • Tailiang Guo
  • Yongai ZhangEmail author


Thin-film encapsulation (TFE) is essential and challenging for flexible organic/quantum dot light-emitting diodes (OLEDs/QLEDs). In this work, SiO2 nanoparticles were added into the NEA 121 polymer (s-NEA) to prolong the permeation pathways, showing good barrier property and high optical transparency. With increasing the concentration of SiO2 nanoparticles up to 20 mg/ml, the value of water vapor transmission rate (WVTR) decreased. A single s-NEA layer with silica concentration of 20 mg/ml and thickness of ~ 75 µm exhibited WVTR of 2.5 × 10−3 g/m2/day and light transmittance of above 80%. Al2O3 thin films fabricated using atomic layer deposition were inserted between s-NEA layers to form dyad-style Al2O3/s-NEA multilayers. The Al2O3 (60 nm)/s-NEA (20 µm) multilayers with 3 units exhibited WVTR of 2.6 × 10−5 g/m2/day and consistently demonstrated a significantly extended QLED lifetime.



This work was financially supported by the National Natural Science Foundation of China (No. 61775038 and No. 61904031), the National Natural Science Foundation of Fujian Province, China (2017J01758, 2017J01504 and 2019J01221), and the Program for New Century Excellent Talents in Fujian Province University.


  1. 1.
    Z.A. Hasan, K.L. Woon, W.S. Wong, A. Ariffin, S.-A. Chen, J. Lumin. 183, 150 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Kim, Y. Fu, S. Kim, W. Lee, K.H. Lee, H.K. Chung, H.J. Lee, H. Yang, H. Chae, ACS Nano 11, 1982 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.-L. Chang, Y. Song, Z. Wang, M.G. Helander, J. Qiu, L. Chai, Z. Liu, G.D. Scholes, Z. Lu, Adv. Funct. Mater. 23, 705 (2013)CrossRefGoogle Scholar
  4. 4.
    A.K. Bansal, S. Hou, O. Kulyk, E.M. Bowman, I.D. Samuel, Adv. Mater. 27, 7638 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 515, 96 (2014)CrossRefGoogle Scholar
  6. 6.
    S.F. Lim, L. Ke, W. Wang, S.J. Chua, Appl. Phys. Lett. 78, 2116 (2001)CrossRefGoogle Scholar
  7. 7.
    J. Mcelvain, H. Antoniadis, M.R. Hueschen, J.N. Miller, D.M. Roitman, J.R. Sheats, R.L. Moon, J. Appl. Phys. 80, 6002 (1996)CrossRefGoogle Scholar
  8. 8.
    H. Aziz, Z. Popovic, C.P. Tripp, N.-X. Hu, A.-M. Hor, G. Xu, Appl. Phys. Lett. 72, 2642 (1998)CrossRefGoogle Scholar
  9. 9.
    D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, Y.-F. Liu, Opt. Commun. 362, 43 (2016)CrossRefGoogle Scholar
  10. 10.
    M.D. Kempe, M.O. Reese, A.A. Dameron, Rev. Sci. Instrum. 84, 025109 (2013)CrossRefGoogle Scholar
  11. 11.
    P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, L. Michalski, M. Weaver, J.J. Brown, D. Fogarty, L.S. Sapochak, Proc. SPIE 4105, 4175 (2001)Google Scholar
  12. 12.
    N. Thejo Kalyani, S.J. Dhoble, Renew. Sust. Energ. Rev. 44, 319 (2015)CrossRefGoogle Scholar
  13. 13.
    P.E. Burrows, V. Bulovic, S.R. Forrest, L.S. Sapochak, D.M. Mccarty, M.E. Thompson, Appl. Phys. Lett. 65, 2922 (1994)CrossRefGoogle Scholar
  14. 14.
    K.H. Yoon, H.S. Kim, K.S. Han, S.H. Kim, Y.K. Lee, N.K. Shrestha, S.Y. Song, M.M. Sung, ACS Appl. Mater. Interfaces 9, 5399 (2017)CrossRefGoogle Scholar
  15. 15.
    K.L. Jarvis, P.J. Evans, Thin Solid Films 624, 111 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Chen, Y. Weng, F. Sun, X. Zhou, C. Wu, Q. Yan, T. Guo, Y. Zhang, RSC Adv. 9, 20884 (2019)CrossRefGoogle Scholar
  17. 17.
    P. Van De Weijer, P.C.P. Bouten, S. Unnikrishnan, H.B. Akkerman, J.J. Michels, T.M.B. Van, Mol. Org. Electron. 4, 94 (2017)CrossRefGoogle Scholar
  18. 18.
    R.K. Bharadwaj, Macromolecules 34, 9189 (2001)CrossRefGoogle Scholar
  19. 19.
    P. Dittanet, R.A. Pearson, Polymer 53, 1890 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Megahed, A.A. Megahed, M.A. Agwa, Mater. Technol. 33, 398 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Sun, F. Li, Q. Zeng, H. Hu, T. Guo, Org. Electron. 63, 65 (2018)CrossRefGoogle Scholar
  22. 22.
    H.-K. Seo, M.-H. Park, Y.-H. Kim, S.-J. Kwon, S.-H. Jeong, T.-W. Lee, ACS Appl. Mater. Interfaces 8, 14725 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.C. Han, E. Kim, W. Kim, H.-G. Im, B.-S. Bae, K.C. Choi, Org. Electron. 14, 1435 (2013)CrossRefGoogle Scholar
  24. 24.
    A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Thin Solid Films 292, 135 (1997)CrossRefGoogle Scholar
  25. 25.
    L. Niinistö, M. Nieminen, J. Päiväsaari, J. Niinistö, M. Putkonen, M. Nieminen, Phys. Status Solidi A. 201, 1443 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Ali, C.Y. Kim, K.-H. Choi, J. Mater. Sci. 25, 1922 (2014)Google Scholar
  27. 27.
    M.M. Ur Rehman, M.M. Rehman, M. Sajid, J.W. Lee, K.H. Na, J.B. Ko, K.H.J. Choi, Mater. Sci. 29, 14396 (2018)Google Scholar
  28. 28.
    Y. Weng, G. Chen, X. Zhou, Q. Yan, T. Guo, Y. Zhang, Nanotechnology 30, 085702 (2019)CrossRefGoogle Scholar
  29. 29.
    C. Féry, B. Racine, D. Vaufrey, H. Doyeux, S. Cinà, Appl. Phys. Lett. 87, 213502 (2005)CrossRefGoogle Scholar
  30. 30.
    W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, L. Qian, Nat. Commun. 9, 2608 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.Zhicheng CollegeFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations