The effect of Sr doping on structural and dielectric properties of Ba2Co2Fe12O22 ceramics

  • Q. S. Fu
  • X. H. Chen
  • C. Chakrabarti
  • C. L. Li
  • J. Zheng
  • Y. H. Li
  • Y. Qiu
  • B. Meng
  • S. L. YuanEmail author


Polycrystalline Ba2−xSrxCo2Fe12O22 (0 ≤ x≤0.5) ceramics have been synthesized by the conventional solid-state-reaction method. From the analysis of X-ray diffraction and scanning electron microscopy, it can be obtained that the lattice parameters decrease monotonically with the increase in Sr doping content, while the average grain size presents a complicated trend. The dielectric measurements show that dielectric constants of all samples are larger than 103 over a wide range of temperature and frequency (300–650 K and 1 kHz–1 MHz), which is identified as colossal dielectric constant. However, with the rise in Sr doping content, disparate evolutions of dielectric constant are found at 300 K and 600 K. A detailed study of dielectric response, impedance spectra and conductivity analysis suggest that the variation of dielectric constant at 300 K is dominated by the activation energy of relaxation, while that at 600 K is mainly in connection with the average grain size.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474111 and 11604281) and Nanhu Scholars Program of XYNU. We would like to thank the staff of the Analysis Center of Huazhong University of Science and Technology for their assistance in various measurements.


  1. 1.
    K. Zhai, D.S. Shang, Y.S. Chai, G. Li, J.W. Cai, B.G. Shen, Y. Sun, Room-temperature nonvolatile memory based on a single-phase multiferroic hexaferrite. Adv. Funct. Mater. 28, 1705771 (2018)CrossRefGoogle Scholar
  2. 2.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Mahmood, F. Jaradat, A.-F. Lehlooh, A. Hammoudeh, Structural properties and hyperfine interactions in Co–Zn Y-type hexaferrites prepared by sol–gel method. Ceram. Int. 40, 5231–5236 (2014)CrossRefGoogle Scholar
  4. 4.
    I. Sadiq, I. Ali, E.V. Rebrov, S. Naseem, M.N. Ashiq, M. Rana, Influence of Nd-Co substitution on structural, electrical, and dielectric properties of x-type hexagonal nanoferrites. J. Mater. Eng. Perform. 23, 622–627 (2014)CrossRefGoogle Scholar
  5. 5.
    W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Tokura, S. Seki, Multiferroics with spiral spin orders. Adv. Mater. 22, 1554–1565 (2010)CrossRefGoogle Scholar
  7. 7.
    M.J. Iqbal, R.A. Khan, Enhancement of electrical and dielectric properties of Cr doped BaZn2 W-type hexaferrite for potential applications in high frequency devices. J. Alloy. Compd. 478, 847–852 (2009)CrossRefGoogle Scholar
  8. 8.
    M.N. Ashiq, M.J. Iqbal, I.H. Gul, Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. J. Alloy. Compd. 487, 341–345 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, T. Kimura, Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41. Phys. Rev. Lett. 106, 087201 (2011)CrossRefGoogle Scholar
  10. 10.
    C. Yuan, Y. Hong, Microwave adsorption of core–shell structure polyaniline/SrFe12O19 composites. J. Mater. Sci. 45, 3470–3476 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, S. Zhang, W. Zhu, L. Ling, L. Zhang, Z. Qu, L. Pi, W. Tong, M. Tian, Y. Zhang, Nonzero electric polarization and four magnetoelectric states at zero magnetic field in Cr-doped Y-type hexaferrite. Appl. Phys. Lett. 110, 262901 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Vít, F. Kadlec, C. Kadlec, F. Borodavka, Y.S. Chai, K. Zhai, Y. Sun, S. Kamba, Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22. Phys. Rev. B 97, 134406 (2018)CrossRefGoogle Scholar
  13. 13.
    K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B.C. Chakoumakos, D. Shang, L. Yan, F. Wang, Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites. Nat. Commun. 8, 519 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Wang, S. Cao, Y. Cao, S. Hu, X. Wang, Z. Feng, B. Kang, Y. Chai, J. Zhang, W. Ren, Magnetic field controllable electric polarization in Y-type hexaferrite Ba0.5Sr1.5Co2Fe12O22. J. Appl. Phys. 118, 094102 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Hirose, K. Haruki, A. Ando, T. Kimura, Mutual control of magnetization and electrical polarization by electric and magnetic fields at room temperature in Y-type BaSrCo2−xZnxFe11AlO22 ceramics. Appl. Phys. Lett. 104, 022907 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Wu, W. Zhong, X. Gao, L. Liu, Z. Liu, Analysis of the alternating current conductivity and magnetic behaviors for the polycrystalline Y-type Ba0.5Sr1.5Co2(Fe1−xAlx)12O22 hexaferrites. J. Appl. Phys. 116, 224103 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Kimura, G. Lawes, A. Ramirez, Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Pullar, M.D. Taylor, A. Bhattacharya, Magnetic Co2Y ferrite, Ba2Co2Fe12O22 fibres produced by a blow spun process. J. Mater. Sci. 32, 365–368 (1997)CrossRefGoogle Scholar
  19. 19.
    C. Sudakar, G. Subbanna, T. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263, 253–268 (2003)CrossRefGoogle Scholar
  20. 20.
    A. Elahi, M. Ahmad, I. Ali, M. Rana, Preparation and properties of sol–gel synthesized Mg-substituted Ni2Y hexagonal ferrites. Ceram. Int. 39, 983–990 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Behera, S. Ravi, Magnetic and dielectric spectroscopic studies in Zn substituted Y-type barium hexaferrite. J. Alloy. Compd. 767, 712–723 (2018)CrossRefGoogle Scholar
  22. 22.
    S.H. Chun, Y.S. Chai, Y.S. Oh, D. Jaiswal-Nagar, S.Y. Haam, I. Kim, B. Lee, D.H. Nam, K.-T. Ko, J.-H. Park, Realization of giant magnetoelectricity in helimagnets. Phys. Rev. Lett. 104, 037204 (2010)CrossRefGoogle Scholar
  23. 23.
    H.B. Lee, S.H. Chun, K.W. Shin, B.-G. Jeon, Y.S. Chai, K.H. Kim, J. Schefer, H. Chang, S.-N. Yun, T.-Y. Joung, Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0.3Sr1.7Co2Fe12O22. Phys. Rev. B 86, 094435 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Hiraoka, H. Nakamura, M. Soda, Y. Wakabayashi, T. Kimura, Magnetic and magnetoelectric properties of Ba2−xSrxNi2Fe12O22 single crystals with Y-type hexaferrite structure. J. Appl. Phys. 110, 033920 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Hirose, K. Haruki, A. Ando, T. Kimura, Effect of high-pressure oxygen annealing on electrical and magnetoelectric properties of BaSrCo2Fe11AlO22 ceramics. J. Am. Ceram. Soc. 98, 2104–2111 (2015)CrossRefGoogle Scholar
  26. 26.
    Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006)CrossRefGoogle Scholar
  27. 27.
    X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu, C.P. Wong, A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11, 5167–5178 (2017)CrossRefGoogle Scholar
  28. 28.
    H. Khanduri, M. Chandra Dimri, H. Kooskora, I. Heinmaa, G. Viola, H. Ning, M. Reece, J. Krustok, R. Stern, Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites. J. Appl. Phys. 112, 073903 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, W. Zhong, C. Wang, P. Zhang, Y. Wang, Finite-size effects in ferroelectric solid solution BaxSr1-xTiO3. J. Phys. D 32, 546–551 (1999)CrossRefGoogle Scholar
  30. 30.
    K.R. Obulesu, T.S. Rao, K.J. Raju, Magnetic and microwave dielectric properties of Y-type Sr doped Ba2Zn2Fe12O22 hexagonal ferrite. J. Alloy. Compd. 695, 3030–3035 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Xu, J. Yang, W. Bai, Y. Zhang, K. Tang, C. Duan, X. Tang, J. Chu, Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites. J. Appl. Phys. 117, 17D909 (2015)CrossRefGoogle Scholar
  32. 32.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A. Ritus, A. Volkov, A. Loidl, Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002)CrossRefGoogle Scholar
  33. 33.
    C. Li, S. Huang, X. Chen, T. Yan, Q. Fu, R. Zhang, C. Zhu, S. Yuan, Colossal dielectric response and relaxation properties in Co2Z-type hexaferrites. Ceram. Int. 43, 12435–12441 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Abo El Ata, M. El Hiti, M. El Nimr, Room temperature electric and dielectric properties of polycrystalline BaCo2xZnxFe12-2xO19. J. Mater. Sci. Lett. 17, 409–413 (1998)CrossRefGoogle Scholar
  35. 35.
    M. Costa, G. Pires Jr., A. Terezo, M. Graca, A. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 034107 (2011)CrossRefGoogle Scholar
  36. 36.
    V. Murthy, J. Sobhanadri, Dielectric properties of some nickel-zinc ferrites at radio frequency. Phys. Status Solidi A 36, K133–K135 (1976)CrossRefGoogle Scholar
  37. 37.
    K. Wang, C. Wang, Aluminum-vacancy-related dielectric relaxations in AIN ceramics. J. Am. Ceram. Soc. 101, 2009–2016 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Tong, H. Li, W. Ni, Y. Guo, Q. Li, H. Wang, C. Wang, High-temperature colossal dielectric behavior of BaZrO3 ceramics. RSC Adv. 7, 33708–33713 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Tang, C. Jiang, J. Jian, Y. Liang, X. Zhang, H. Wang, H. Yang, Impedance spectroscopy and scaling behaviors of Sr3Co2Fe24O41 hexaferrite. Appl. Phys. Lett. 106, 022902 (2015)CrossRefGoogle Scholar
  40. 40.
    C. Li, T. Yan, G. Barasa, Y. Li, R. Zhang, S. Huang, S. Yuan, Colossal dielectric response in Ba1.5Sr1.5Co2Fe24O41 ceramics at high-temperature. J. Mater. Sci. 29, 9971–9978 (2018)Google Scholar
  41. 41.
    L. Liu, C. Wang, X. Sun, G. Wang, C. Lei, T. Li, Oxygen-vacancy-related relaxations of Sr3CuNb2O9 at high temperatures. J. Alloy. Compd. 552, 279–282 (2013)CrossRefGoogle Scholar
  42. 42.
    W. Li, R.W. Schwartz, ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: grain boundary and domain boundary effects. Appl. Phys. Lett. 89, 242906 (2006)CrossRefGoogle Scholar
  43. 43.
    L. Zhang, Z.J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 70, 174306 (2004)CrossRefGoogle Scholar
  44. 44.
    S. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)CrossRefGoogle Scholar
  45. 45.
    Ashima, S. Sanghi, A. Agarwal, Reetu, N. Ahlawat, Monica, Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites. J. Appl. Phys. 112, 14–110 (2012)CrossRefGoogle Scholar
  46. 46.
    M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010)CrossRefGoogle Scholar
  47. 47.
    H.-I. Hsiang, F.-S. Yen, Y.-H. Chang, Effects of doping with La and Mn on the crystallite growth and phase transition of BaTiO3 powders. J. Mater. Sci. 31, 2417–2424 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.School of Physics and Electronic EngineeringXinyang Normal UniversityXinyangPeople’s Republic of China

Personalised recommendations