Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21018–21031 | Cite as

Study of the effect of Mn substitution on the electrical and dielectric behavior of Spinel structured materials

  • Amira BougoffaEmail author
  • Jalel Massoudi
  • Mourad Smari
  • Essebti Dhahri
  • Kamel Khirouni
  • Lotfi Bessais


In this study, nanoparticles of Co1–xMnxCr2O4 (x = 0, 0.3) were synthesized by sol–gel method. The phase identification of the obtained samples was performed by X-Ray diffraction proving their crystallization in the cubic structure with the \(Fd\bar{3}m\) space group. The sample purity and morphology were studied by energy dispersive of photon X and scanning electron microscopy. Optical properties were investigated by Fourier transform infrared spectroscopy and Raman scattering analysis. The impedance spectroscopy technique over the temperature range from 420 to 660 K was used in order to understand the relaxation process and the evolution of the electrical behavior in these materials. Accordingly, the experimental data of the real and imaginary parts of the impedance were fitted to the equivalent circuit Rg//C//CPE. As a matter of fact, the activation energies extracted from the imaginary part of the electrical modulus, the imaginary part of the impedance, from the grain resistance Rg and the electrical conductivity were closed and affirm a transformation of the electrical behavior confirmed by a decrease of the material resistance after substitution of Co cations by Mn ones. The study of the AC conductivity shows a Jonscher’s behavior and a thermally activated conduction process, by CBH model, which become clearer after the substitution.



  1. 1.
    I.C. Nlebedim, J.E. Snyder, A.J. Moses, D.C. Jiles, J. Magn. Magn. Mater. 322, 3938 (2010)Google Scholar
  2. 2.
    A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Mater. Sci. Semi. Pro. 27, 468–473 (2014)Google Scholar
  3. 3.
    A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Struct. 1139, 430–435 (2017)Google Scholar
  4. 4.
    M. Ranjbar, M.A. Taher, S.M. Hosseinpour-Mashkani, J. Clust. Sci. 24, 959–967 (2013)Google Scholar
  5. 5.
    S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, J. Alloys Compd. 566, 54 (2013)Google Scholar
  6. 6.
    K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, J. Appl. Phys. 97, 10F101 (2005)Google Scholar
  7. 7.
    D.H. Lee, H.S. Kim, C.H. Yo, K. Ahn, K.H. Kim, Mater. Chem. Phys. 57, 169 (1998)Google Scholar
  8. 8.
    M. Atif, M. Idrees, M. Nadeem, M. Siddiquec, W. Ashraf, RSC Adv. 6, 20876 (2016)Google Scholar
  9. 9.
    Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)Google Scholar
  10. 10.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)Google Scholar
  11. 11.
    N. Dhahri, A. Dhahri, K. Cherif, J. Dhahri, H. Belmabrouk, E. Dhahri, J. Alloys Compd. 507, 405 (2010)Google Scholar
  12. 12.
    C.F. Zhang, X.C. Zhong, H.Y. Yu, Z.W. Liu, D.C. Zeng, Phys. B 404, 2327 (2009)Google Scholar
  13. 13.
    P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, J. Alloys Compd. 492, 590 (2010)Google Scholar
  14. 14.
    H. Waqas, A.H. Qureshi, K. Subhan, M. Shahzad, Ceram. Int. 38, 1235 (2012)Google Scholar
  15. 15.
    C.V. Ramana, Y.D. Kolekar, K.K. Bharathi, B. Sinha, K. Ghosh, J. Appl. Phys. 114, 183907 (2013)Google Scholar
  16. 16.
    S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, J. Alloys Compd. 555, 330 (2013)Google Scholar
  17. 17.
    N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, J. Phys: Condens. Matter 19, 386201 (2007)Google Scholar
  18. 18.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1965)Google Scholar
  19. 19.
    Y. Koseoglu, F. Alan, M. Tan, R. Yilgin, M. Ozturk, Ceram. Int. 38, 3625 (2012)Google Scholar
  20. 20.
    A. Guinier, in Theorie et Technique de la radiocristallographie, ed. by X. Dunod, 3rd edn (1964), p. 462Google Scholar
  21. 21.
    D. Zákutná, J. Vlˇcek, P. Fitl, K. Nemkovski, D. Honecker, D. Nižˇnanský, S. Disch, Phys. Rev. B 98, 064407 (2018)Google Scholar
  22. 22.
    H. Chouaya, M. Smari, I. Walha, E. Dhahri, M.P.F. Graça, M.A. Valente, Magn. Magn. Mater. 451, 344–350 (2018)Google Scholar
  23. 23.
    A. Han, M. Ye, Z. Zhang, J. Liao, N. Li, Adv. Mater. Res. 616–618, 1877–1881 (2013)Google Scholar
  24. 24.
    M.K. Anupama, B. Rudraswamy, N. Dhananjaya, Alloys Compd. 706, 554–561 (2017)Google Scholar
  25. 25.
    P. Choudhary, D. Varshney, Mater. Res. Express 4, 076110 (2017)Google Scholar
  26. 26.
    J. Chen, W. Shi, X. Zhang, H. Arandiyan, D. Li, J. Li, Environ. Sci. Technol. 19, 8491–8497 (2011)Google Scholar
  27. 27.
    P. Choudhary, A. Yadav, D. Varshney, AIP Conf. Proceed 1832, 050051 (2017)Google Scholar
  28. 28.
    D. Jasaitis, A. Beganskienė, J. Senvaitienė, A. Kareiva, R. Ramanauskas, R. Juškėnas, A. Selskis, Chemija 22, 125–130 (2011)Google Scholar
  29. 29.
    P. Choudhary, P. Saxena, A. Yadav, A.K. Sinha, V.N. Rai, M.D. Varshney, A. Mishraf, Supercond. Novel Magn. 32, 2639–2645 (2019)Google Scholar
  30. 30.
    R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V.J. Sharma, Alloys Compd. 684, 569–581 (2016)Google Scholar
  31. 31.
    M.A. Kassem, A. Abu El-Fadl, A.M. Nashaat, H. Nakamura, Alloys Compd 790, 853–862 (2019)Google Scholar
  32. 32.
    W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, Phys. Chem. Solids 117, 1–12 (2018)Google Scholar
  33. 33.
    R. Jemaï, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, J Alloys Compd. 705, 340–348 (2017)Google Scholar
  34. 34.
    H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457 (2015)Google Scholar
  35. 35.
    C. Bharti, T.P. Sinha, J. Physica B 406, 1827 (2011)Google Scholar
  36. 36.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1942)Google Scholar
  37. 37.
    A. Dutta, C. Bharti, T.P. Sinha, J. Physica B 403, 3389 (2008)Google Scholar
  38. 38.
    H. Felhi, R. Lahouli, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, J. Mol. Struct. 1179, 1 (2019)Google Scholar
  39. 39.
    M. Idress, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)Google Scholar
  40. 40.
    A. Dutta, T.P. Sinha, Phys. Rev. B 76, 155113 (2007)Google Scholar
  41. 41.
    P. Victor, S. Bhattacharyya, S.B. Krupanidhi, J. App. Phys. 94, 5135 (2003)Google Scholar
  42. 42.
    C. Bharti, T.P. Sinha, J. Solid State Sci. 12, 498 (2010)Google Scholar
  43. 43.
    J. Liu, Ch-G Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)Google Scholar
  44. 44.
    J.S. Kim, J. Phys. Soc. Jpn. 70, 3129 (2001)Google Scholar
  45. 45.
    A. Dutta, T.P. Sinha, J. Physica B 405, 1475 (2010)Google Scholar
  46. 46.
    M. BakrMohamed, H. Wang, H. Fuess, J. Phys. D: Appl. Phys. 43, 455409 (2010)Google Scholar
  47. 47.
    J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ion. 13, 147 (1984)Google Scholar
  48. 48.
    R. Bergman, J. Appl. Phys. 88, 1356 (2000)Google Scholar
  49. 49.
    K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801 (2007)Google Scholar
  50. 50.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New York, 2005), p. 14Google Scholar
  51. 51.
    S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion. 146, 329 (2002)Google Scholar
  52. 52.
    A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)Google Scholar
  53. 53.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  54. 54.
    A. Dhahri, F.I.H. Rhou, J. Dhahri, E. Dhahri, M.A. Valente, Solid State Commun. 15, 738 (2011)Google Scholar
  55. 55.
    A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506 (2015)Google Scholar
  56. 56.
    K.P. Padmasree, D.K. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)Google Scholar
  57. 57.
    F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, J. Superlat. Microstr. 117, 260 (2018)Google Scholar
  58. 58.
    I. Coondoo, N. Panwar, R. Vidyasagar, A.L. Kholkin, J. Phys. Chem. Chem. Phys. 18, 31184 (2016)Google Scholar
  59. 59.
    A. Humaira, M. Asghari, Mater. Res. Bull. 49, 426 (2014)Google Scholar
  60. 60.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)Google Scholar
  61. 61.
    J.E. Bao, J. Zhou, Z.X. Yue, L.T. Li, Z.L. Gui, Mater. Sci. Eng., B 99, 98 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amira Bougoffa
    • 1
    Email author
  • Jalel Massoudi
    • 1
  • Mourad Smari
    • 1
  • Essebti Dhahri
    • 1
  • Kamel Khirouni
    • 2
  • Lotfi Bessais
    • 3
  1. 1.Laboratory of Applied Physics, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Laboratory of Physics of Materials and Nanomaterials Applied for Environment, Faculty of SciencesUniversity of GabesGabesTunisia
  3. 3.CMTR, ICMPE, UMR 7182 CNRS-UPECThiaisFrance

Personalised recommendations