Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21011–21017 | Cite as

Preparation and magnetization dynamics of CoFe2O4–SrFe12O19 nanocomposites

  • Kalyani DhabekarEmail author
  • K. Mohan Kant


Composites of different weight ratios were prepared from CoFe2O4 and SrFe12O19 nanoparticles. The pure phase formation was confirmed by X-ray diffraction analysis. The average crystallite size of the individual CoFe2O4 and SrFe12O19 nanoparticles were found as 17 nm and 43 nm, respectively. Exchange interaction in prepared composites is corroborated with the \(M{-}H\) curves. First order reversal curve measurements have been performed for the prepared composites to establish exchange interaction.



The authors would like to thank Prof. P. S. Anil Kumar and Mr. Soubhik Kayal for extending magnetic measurements; DST-SAIF, STIC Kochi for XRD facilities and DST, Government of India for financial support.


  1. 1.
    E.F. Kneller, R. Hawig, The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 3588, 27 (1991). CrossRefGoogle Scholar
  2. 2.
    T. Schrefl, H. Kronmuller, J. Fidler, Exchange hardening in nano-structured two-phase permanent magnets. J. Magn. Magn. Mater. L273, 127 (1993). CrossRefGoogle Scholar
  3. 3.
    D. Roy, P.S. Anil Kumar, Exchange spring behaviour in SrFe12O19-CoFe2O4 nanocomposites. AIP Adv. 5(1), 077137 (2015). CrossRefGoogle Scholar
  4. 4.
    T. Schrefl, J. Fidler, H. Kronmuller, Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys. Rev. B 6100, 49 (1994). CrossRefGoogle Scholar
  5. 5.
    M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 43, 371 (2014). CrossRefGoogle Scholar
  6. 6.
    Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 3548, 60 (2006). CrossRefGoogle Scholar
  7. 7.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 1191, 57 (2012). CrossRefGoogle Scholar
  8. 8.
    K.V. Chandekar, K.M. Kant, Effect of size and shape dependent anisotropy on superparamagnetic property of CoFe2O4 nanoparticles and nanoplatelets. Physica B 152, 520 (2017). CrossRefGoogle Scholar
  9. 9.
    Y. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B 42, 337 (2003). CrossRefGoogle Scholar
  10. 10.
    W. Hai, H. Jun, D. Liyun, W. Chao, H. Yun, Controlled preparation of monodisperse CoFe2O4 nanoparticles. J. Wuhan Univ. Technol. Mater. Sci. Ed. 257, 26 (2011). CrossRefGoogle Scholar
  11. 11.
    Q. Wu, Z. Yu, H. Hao, Y. Chu, H. Xie, The effect of pH value on strontium hexaferrites: microstructure and magnetic properties. J. Mater. Sci.: Mater. Electron. 12768, 28 (2017). CrossRefGoogle Scholar
  12. 12.
    E. Kiani, A.S.H. Rozatian, M.H. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by low-temperature solid-state reaction method. J. Mater. Sci.: Mater. Electron. 2485, 24 (2013). CrossRefGoogle Scholar
  13. 13.
    J.H. Choy, Y.S. Han, S.W. Song, Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex. Mater. Lett. 257, 19 (1994). CrossRefGoogle Scholar
  14. 14.
    D.H. Chen, Y.Y. Chen, Synthesis of strontium ferrite ultrafine particles using microemulsion processing. J. Colloid Interface Sci. 41, 236 (2001). CrossRefGoogle Scholar
  15. 15.
    L. Pan, D. Cao, P. Jing, J. Wang, Q. Liu, A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect. Nanoscale Res. Lett. 1, 10 (2015). CrossRefGoogle Scholar
  16. 16.
    N. Lwin, M.N.A. Fauzi, S. Sreekantan, R. Othman, Physical and electromagnetic properties of nanosized Gd substituted Mg-Mn ferrites by solution combustion method. Physica B 134, 461 (2015). CrossRefGoogle Scholar
  17. 17.
    Q. Han, X. Meng, C. Lu, Exchange coupled Ni0.5Zn0.5Fe2O4/SrFe12O19 composites with enhanced microwave absorption performance. J. Alloys Compd. 1, 18 (2018). CrossRefGoogle Scholar
  18. 18.
    I.D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, 2nd edn. (Elsevier, Amsterdam, 2003), p. 149CrossRefGoogle Scholar
  19. 19.
    C.B. Rong, J.P. Liu, Effect of thermal fluctuations on the recoil loops of SmCo5/Fe nanocomposite system. Appl. Phys. Lett. 172510, 94 (2009). CrossRefGoogle Scholar
  20. 20.
    C.R. Pike, A.P. Roberts, K.L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 6660, 85 (1999). CrossRefGoogle Scholar
  21. 21.
    V. Pop, S. Gutoiu, E. Dorolti, C. Leostein, O. Isnard, I. Chicinas, O. Pana, The influence of milling and annealing on the structural and magnetic behavior of Nd2Fe14B/-Fe magnetic nanocomposite. J. Alloys Compd. 821, 581 (2013). CrossRefGoogle Scholar
  22. 22.
    J. Jin, X. Sun, M. Wang, Z.L. Ding, Y.Q. Ma, The magnetization reversal in CoFe2O4/CoFe2 granular systems. J. Nanoparticle Res. 1, 18 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations