Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 20970–20978 | Cite as

Ultra-low remanence and weak magnetic agglomeration of superparamagnetic magnetite nanoparticles caused by high magnetic moment Tb3+ doping

  • Pengyu Gong
  • Qingyun ChenEmail author
  • Kaimin Shih
  • Changzhong LiaoEmail author
  • Lielin Wang
  • Hua Xie
  • Sihao Deng


The structure and magnetic properties of the magnetite can be substantial corrected by incorporating foreign cations. In this work, Tb3+ was successfully incorporated into magnetite and superparamagnetic magnetite nanoparticles were obtained, using solvothermal method. The doping of Tb3+ greatly reduces the Mr and Hc values of the magnetite. Due to the doping of high magnetic moment Tb3+, the original magnetic moment of the magnetite is destroyed and magnetic domain are decomposed, resulting in a significant reduction in remanence and magnetic agglomeration. The remarkable effect of Tb3+ doping degaussing will provide new prospects for the application of magnetite materials in the superparamagnetic direction.



This work was financially supported by Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 16Za0129) and Longshan Academic Talent Research Support Program of the Southwest University of Science and Technology (Grant No. 18lzx662).


  1. 1.
    E.J. Verwey, P.W. Haayman, F.C. Romeijn, Physical properties and cation arrangement of oxides with spinel structures II. Electronic conductivity. J. Chem. Phys. 15, 181–187 (1947)Google Scholar
  2. 2.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167 (2003)Google Scholar
  3. 3.
    Y.P. Fu, Electrical conductivity and magnetic properties of Li0.5Fe2.5-xCrxO4 ferrite. Mater. Chem. Phys. 115, 334–338 (2009)Google Scholar
  4. 4.
    R. Hergt, S. Dutz, R. Müller, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.-Condes. Matter 18, S2919 (2006)Google Scholar
  5. 5.
    M. Mahmoudi, S. Sant, B. Wang, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)Google Scholar
  6. 6.
    A.F. Ngomsik, A. Bee, M. Draye, Magnetic nano-and microparticles for metal removal and environmental applications: a review. C. R. Chim. 8, 963–970 (2005)Google Scholar
  7. 7.
    S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 468, 334–346 (2015)Google Scholar
  8. 8.
    L. Wang, Z. Yang, J. Gao, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006)Google Scholar
  9. 9.
    M. Liong, J. Lu, M. Kovochich, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008)Google Scholar
  10. 10.
    O.E. Polozhentsev, S.P. Kubrin, V.V. Butova, Structure and magnetic properties of pure and samarium doped magnetite nanoparticles. J. Struct. Chem. 57, 1459–1468 (2016)Google Scholar
  11. 11.
    A. Lv, C. Hu, Y. Nie, Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl. Catal. B 117, 246–252 (2012)Google Scholar
  12. 12.
    T.A. Lastovina, A.P. Budnyk, E.A. Kudryavtsev, Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles. Mater. Sci. Eng., C 80, 110–116 (2017)Google Scholar
  13. 13.
    J. Choi, J.C. Kim, Y.B. Lee, Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem. Commun. 16, 1644–1646 (2007)Google Scholar
  14. 14.
    G.K. Das, Y. Zhang, L. D’Silva, Single-phase Dy2O3: Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater. 23, 2439–2446 (2011)Google Scholar
  15. 15.
    B.P. Jacob, S. Thankachan, S. Xavier, Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013)Google Scholar
  16. 16.
    J. Guo, C. Cui, W. Yang, Microstructures and magnetic properties of Tb-Fe-Co magnetic nanowire arrays prepared by electrochemical deposition. Superlattices Microstruct. 128, 298–306 (2019)Google Scholar
  17. 17.
    K.P. Rice, S.E. Russek, R.H. Geiss, Temperature-dependent structure of Tb-doped magnetite nanoparticles. Appl. Phys. Lett. 106, 062409 (2015)Google Scholar
  18. 18.
    H. Peng, G. Liu, X. Dong, Magnetic, luminescent and core-shell structured Fe3O4@YF3: Ce3+, Tb3+ bifunctional nanocomposites. Powder Technol. 215, 242–246 (2012)Google Scholar
  19. 19.
    Z. Qi, T.P. Joshi, R. Liu, Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J. Hazard. Mater. 329, 193–204 (2017)Google Scholar
  20. 20.
    M. Abareshi, E.K. Goharshadi, S.M. Zebarjad, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J. Magn. Magn. Mater. 322, 3895–3901 (2010)Google Scholar
  21. 21.
    J.F.W. Bowles, The iron oxides: structure, properties reactions occurrence and uses. Mineral. Mag. 61, 740–741 (1997)Google Scholar
  22. 22.
    G. Huang, H. Li, J. Chen, Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 6, 10404–10412 (2014)Google Scholar
  23. 23.
    J. Liu, Y. Bin, M. Matsuo, Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J. Phys. Chem. C 116, 134–143 (2011)Google Scholar
  24. 24.
    D. Li, X. Zhang, J. Yao, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 47, 1710–1712 (2011)Google Scholar
  25. 25.
    W. Zhao, Y. Wu, J. Xu, Retraction: effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios. RSC Adv. 6, 99639 (2016)Google Scholar
  26. 26.
    N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. Am. J. Nanomater. 2, 4–7 (2014)Google Scholar
  27. 27.
    J. Mohapatra, A. Mitra, D. Bahadur, Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15, 524–532 (2013)Google Scholar
  28. 28.
    K.N. Harish, H.S.B. Naik, P.N.P. Kumar, Optical and photocatalytic properties of CdFe2O4 nanocatalysts: potential application in water treatment under solar light irradiation. Arch. Appl. Sci. Res. 5, 42–51 (2013)Google Scholar
  29. 29.
    C.A. Quinto, P. Mohindra, S. Tong, Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7, 12728–12736 (2015)Google Scholar
  30. 30.
    I. Karimzadeh, M. Aghazadeh, T. Doroudi, Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J. Clust. Sci. 28, 1259–1271 (2017)Google Scholar
  31. 31.
    S. Anjum, R. Tufail, H. Saleem, Investigation of stability and magnetic properties of Ni-and Co-doped iron oxide nano-particles. J. Supercond. Nov. Magn. 30, 2291–2301 (2017)Google Scholar
  32. 32.
    W. Huan, G. Ji, C. Cheng, Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. J. Nanosci. Nanotechnol. 15, 1780–1788 (2015)Google Scholar
  33. 33.
    K. Haneda, A.H. Morrish, Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258–4260 (1988)Google Scholar
  34. 34.
    M.X. Xu, Study of magnetic properties in ZnxFe3-xO4 composite magnetic fluids. Acta Phys.-Chim. Sin. 15, 619–623 (1999)Google Scholar
  35. 35.
    E. Talik, Magnetic and transport properties of the R3Ni system (R = Y, Gd, Tb, Dy, Ho, Er). Phys. B 193, 213–220 (1994)Google Scholar
  36. 36.
    L. Guo, X. Shen, X. Meng, Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J. Alloys Compd. 490, 301–306 (2010)Google Scholar
  37. 37.
    Q. Song, Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164–6168 (2004)Google Scholar
  38. 38.
    J. C. Bonner, R. C. Ohandley, J. F. Janak, Annual Conference on Magnetism and Magnetic Materials, 26th, Dallas, Tex. November 11-14, 1980, Proceedings. J. Appl. Phys. 52, (1981)Google Scholar
  39. 39.
    E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A 240, 599–642 (1948)Google Scholar
  40. 40.
    X. Zhang, Y. Niu, X. Meng, Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15, 8166–8172 (2013)Google Scholar
  41. 41.
    B. Zhai, Q. Ma, Y.M. Huang, Instability of the characteristic emissions of dopant Tb in ZnO hexagonal pyramids. J. Electron. Mater. 46, 947–954 (2017)Google Scholar
  42. 42.
    Y. Zhang, G.K. Das, R. Xu, Tb-doped iron oxide: bifunctional fluorescent and magnetic nanocrystals. J. Mater. Chem. 19, 3696–3703 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and TechnologyMianyangChina
  2. 2.Department of Civil EngineeringUniversity of Hong KongHong KongChina

Personalised recommendations