Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20360–20368 | Cite as

Comparative study of structural electrical dielectric and ferroelectric properties of HfO2 deposited by plasma-enhanced atomic layer deposition and radio frequency sputtering technique for the application in 1-T FeFET

  • Rajesh Kumar JhaEmail author
  • Prashant Singh
  • Manish Goswami
  • B. R. Singh
Article
  • 61 Downloads

Abstract

For this proposed work, the comparison of structural, electrical, dielectric, and ferroelectric properties of HfO2 film deposited by plasma-enhanced atomic layer deposition (PEALD) and radio frequency (RF) sputtering technique. Various characteristics has been obtained by fabricating the metal-ferroelectric-silicon (MFeS) and metal-ferroelectric-metal (MFeM) capacitors with different thickness of HfO2 (5, 10, 15, 20 nm) as a ferroelectric layer deposited on silicon and TiN/Silicon. The structural properties such as crystallographic phase, grain size with composition and refractive index of the deposited film were measured by X-ray diffraction, Field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS) and multiple angle ellipsometry with the variation in annealing temperature. MFeS and MFeM structure were fabricated to obtain electrical and ferroelectric properties such as memory window, leakage current density, closed loop hysteresis, remnant polarization, charge, coercive field voltage, data retention time, endurance, and breakdown voltage of the deposited film. MFeS structure shows the memory window and flat band voltage shift of 4 V and 1.72 V, respectively for 10 nm PEALD-deposited HfO2 layer. For the sputtered 15 nm film, maximum memory window of 4.32 V and leakage current density of 1.2 × 108 A/cm2 has been observed at the annealing temperature of 800 °C. Remnant polarization of 4 and 1.2 μC/cm2 obtained for PEALD and sputtered HfO2 film. The fabricated structure shows data retention for greater than 10 years and fatigue resistance for higher than 1012 read/write cycles. The reliability of the thin film was investigated by measuring the breakdown voltages of MFeS structure for different film thickness.

Notes

Acknowledgements

The authors would like to express their sincere thanks to Prof. P Nagabhushan, Director IIIT-Allahabad for his constant support and encouragement. Thank is also due to the Advanced Centre for Materials Science, IIT-Kanpur for FESEM and EDS characterization.

References

  1. 1.
    A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Rizk, D. Rizk, A. Kumar, M. Bayoumi, in “Demystifying emerging nonvolatile memory technologies: Understanding advantages, challenges, trends, and novel applications. Proc.—IEEE Int. Symp. Circuits Syst., vol. 2019, May 2019Google Scholar
  3. 3.
    Y. Xie, Emerging Memory Technologies (Springer, Berlin, 2014), pp. 43–56CrossRefGoogle Scholar
  4. 4.
    Y. Xie, Emerging Memory Technologies Design Architecture and Applications_YuanXie.pdf. (2013)Google Scholar
  5. 5.
    V. Garcia et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460(7251), 81–84 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Gong, T.P. Ma, A Study of endurance issues in HfO2-based ferroelectric field effect transistors: charge trapping and trap generation. IEEE Electron. Device Lett. 39(1), 15–18 (2018)CrossRefGoogle Scholar
  7. 7.
    T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43(5), 340–346 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Okuyama, Features (Principles and Development of Ferroelectric-Gate Field-Effect Transistors. Springer, Berlin, 2016), pp. 3–20Google Scholar
  9. 9.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications. Appl. Phys. A 124(2), 92 (2018)CrossRefGoogle Scholar
  10. 10.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Electrical and ferroelectric properties of RF sputtered PZT/SBN on silicon for non-volatile memory applications. Mater. Res. Express 5(2), 026301 (2018)CrossRefGoogle Scholar
  11. 11.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Electrical properties of Pb[Zr 0.35 Ti 0.65]O3 on PEALD Al2O3 for NVM applications. Microelectron. Int. 35(4), 189–196 (2018)CrossRefGoogle Scholar
  12. 12.
    M.T. Buscaglia et al., Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics. Nanotechnology 15(9), 1113–1117 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals : status and perspective. J. Appl. Phys. 111, 031301 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Fukunaga, M. Takesada, A. Onodera, Ferroelectricity in layered perovskites as a model of ultra-thin films. World J. Condens. Matter Phys. 06(03), 224–243 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Swain, P. Kumar, R.B. Choudhary, Electrical and ferroelectric studies of the 2-layered SrBi2Ta2O9 based ceramics. Physica B 477, 56–63 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Memory improvement with high-k buffer layer in metal/SrBi2Nb2O9/Al2O3/silicon gate stack for non-volatile memory applications. Superlattices Microstruct. 121, 55–63 (2018)CrossRefGoogle Scholar
  17. 17.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, On the structural and electrical properties of metal–ferroelectric–high k dielectric–silicon structure for non-volatile memory applications. Bull. Mater. Sci. 41(4), 1–7 (2018)Google Scholar
  18. 18.
    J. Muller, P. Polakowski, S. Mueller, T. Mikolajick, Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS J. Solid State Sci. Technol. 4(5), N30–N35 (2015)CrossRefGoogle Scholar
  19. 19.
    T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99(10), 102903 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Martin et al., Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric. Adv. Mater. 26(48), 8198–8202 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Nourbakhsh, A. Zubair, S. Joglekar, M. Dresselhaus, T. Palacios, Subthreshold swing improvement in MoS2 transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2 gate dielectric stack. Nanoscale 9(18), 6122–6127 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, T. Mikolajick, Ferroelectricity in Gd-Doped HfO 2 Thin Films. ECS J. Solid State Sci. Technol. 1(6), N123–N126 (2012)CrossRefGoogle Scholar
  23. 23.
    T. Olsen et al., Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl. Phys. Lett. 101(8), 082905 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi, Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J. Appl. Phys. 122(12), 124104 (2017)CrossRefGoogle Scholar
  25. 25.
    U. Schroeder et al., Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg. Chem. 57(5), 2752–2765 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Hoffmann et al., Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118(7), 072006 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Zhou et al., Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103(19), 192904 (2013)CrossRefGoogle Scholar
  28. 28.
    K.D. Kim et al., Ferroelectricity in undoped-HfO2thin films induced by deposition temperature control during atomic layer deposition. J. Mater. Chem. C 4(28), 6864–6872 (2016)CrossRefGoogle Scholar
  29. 29.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Structural and electrical characteristics of HfO2 Film deposited by RF sputtering and plasma enhanced atomic layer deposition. Phys. Semicond. Devices (2017).  https://doi.org/10.1007/978-3-319-97604-4_80 CrossRefGoogle Scholar
  30. 30.
    T. Mittmann et al., Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Adv. Mater. Interfaces 6(11), 2–10 (2019)Google Scholar
  31. 31.
    H. Wong, N. Zhan, K.L. Ng, M.C. Poon, C.W. Kok, Interface and oxide traps in high-κ hafnium oxide films. Thin Solid Films 462–463, 96–100 (2004)CrossRefGoogle Scholar
  32. 32.
    L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi, Ferroelectric phase stabilization of HfO2 by nitrogen doping. Appl. Phys. Express 9, 091501 (2016)CrossRefGoogle Scholar
  33. 33.
    F.L. Martínez et al., Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering. J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007)CrossRefGoogle Scholar
  34. 34.
    L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics”. Macromolecules 45(7), 2937–2954 (2012)CrossRefGoogle Scholar
  35. 35.
    G. Giaouris, E., Chorianopoulos, N., Skandamis, P.Y Nychas, in Zulkifli Ahmad Additional, Polymeric Dielectric Materials, p. 450 (2012)Google Scholar
  36. 36.
    R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Information Technology-AllahabadAllahabadIndia

Personalised recommendations