High-performance fibre supercapacitors based on ball-milled activated carbon nanoparticles mixed with pen ink

  • Ruirong ZhangEmail author
  • Yanmeng XuEmail author
  • David Harrison
  • John Fyson
  • Yang Yang


A flexible coaxial fibre supercapacitor based on ball-milled activated carbon nanoparticles mixed with pen ink as electrode materials was successfully fabricated. With the ball-milling time prolonging, the size distribution of the activated carbon particles became gradually narrowed and the average particle size decreased into tens of nanometres from tens of microns, and some Fe2O3 phases were introduced. The specific capacitance of the ball-milled activated carbons improved. Furthermore, an activated carbon ball-milled for 24 h with a higher specific capacitance was selected to mix with commercial ink in a ratio of 1:20 to prepare a new active material for high-performance coaxial fibre supercapacitors. Consequently, the specific capacitance for the fibre supercapacitor reached 14.5 mF cm−1, which was 16 times more than that using commercial ink alone as the active layer material, and four times than that using ink mixed with the original activated carbon.



We acknowledge the funding support by National Natural Science Foundation of China (51905445), Natural Science Foundation of Shaanxi Province (2018JQ5020) and the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 281063.


  1. 1.
    Y. Lv, Y. Zhou, Z. Shao, Y. Liu, J. Wei, Z. Ye, Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. J. Mater. Sci-Mater. El. 30, 8585–8594 (2019)CrossRefGoogle Scholar
  2. 2.
    X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 2160–2181 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong, F. Cheng, X. Lu, Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2, 1700230 (2017)CrossRefGoogle Scholar
  4. 4.
    D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Emergence of fiber supercapacitors. Chem. Soc. Rev. 44, 647–662 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fibre hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Edit. 50, 1683–1687 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Ma, Q. Wang, X. Liang, D. Zhang, M. Miao, Wearable supercapacitors based on conductive cotton yarns. J. Mater. Sci. 53, 14586–14597 (2018)CrossRefGoogle Scholar
  7. 7.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Nitrogen-doped mesoporouscarbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015)CrossRefGoogle Scholar
  9. 9.
    V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J. Lee, S.W. Kim, Y.H. Lee, Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7, 5940–5947 (2013)CrossRefGoogle Scholar
  10. 10.
    X. Zhao, B. Zheng, T. Huang, C. Gao, Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7, 9399–9404 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713–5718 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Dai, H. Guo, M. Wang, J. Liu, G. Wang, C. Hu, Y. Xi, A flexible micro-supercapacitor based on a pen ink-carbon fibre thread. J. Mater. Chem. A 2, 19665–19669 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Wen, S. Li, K. Zhou, Z. Song, B. Li, Z. Chen, T. Chen, Y. Guo, G. Fang, Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Gao, J. Surjadi, K. Cao, H. Zhang, P. Li, S. Xu, C. Jiang, J. Song, D. Sun, Y. Lu, Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces. 9, 5409–5418 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Lyu, B. Gao, F. He, A.R. Zimmerman, C. Ding, H. Huang, J. Tang, Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ. Pollut. 233, 54–63 (2018)CrossRefGoogle Scholar
  16. 16.
    H. Lyu, B. Gao, F. He, C. Ding, J. Tang, J.C. Crittenden, Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain. Chem. Eng. 5, 9568–9585 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Zhang, Y. Xu, D.J. Harrison, J. Fyson, D.J. Southee, Experimental design to optimise electrical performance of strip supercapacitors. Int. J. Electrochem. Sci. 11, 675–684 (2016)Google Scholar
  18. 18.
    R. Zhang, Y. Xu, D. Harrison, J. Fyson, D. Southee, A. Tanwilaisiri, Fabrication and characterization of smart fabric using energy storage fibres. Sys. Sci. Control Eng. 3, 391–396 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872–1876 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Brasil, T.L. Farias, M.G. Carvalho, A recipe for image characterization of fractal-link aggregates. J. Aerosol Sci. 30, 1379–1389 (1999)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, J. Fitz Gerald, L.T. Chadderton, L. Chaffron, Nanoporous carbon produced by ball milling. Appl. Phy. Lett. 74, 2782–2784 (1999)CrossRefGoogle Scholar
  22. 22.
    R. Hukki, I. Reddy. Size Reduction. 2nd European Symposium, H. Rumpf, W. Pietsch (Eds.). Dechema Monographien 57, 13 (1967)Google Scholar
  23. 23.
    D. Qu, Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002)CrossRefGoogle Scholar
  24. 24.
    W. Bratek, A. Świa̧tkowski, M. Pakuła, S. Biniak, M. Bystrzejewski, R. Szmigielski, Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J. Anal. Appl. Pyrol. 100, 192–198 (2013)CrossRefGoogle Scholar
  25. 25.
    N.J. Welham, J.S. Williams, Extended milling of graphite and activated carbon. Carbon 36, 1309–1315 (1998)CrossRefGoogle Scholar
  26. 26.
    Y. Lu, S. Zeng, L. Zhou, X. Huang, Y. Zeng, D. Zheng, W. Xu, X. Lu, Facile synthesis of porous-carbon nanoarchitectures as advanced and durable electrodes for supercapacitors. Part. Part. Syst. Charact. 36, 1900115 (2019)CrossRefGoogle Scholar
  27. 27.
    E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, H. Fujii, Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere. Carbon 44, 983–988 (2006)CrossRefGoogle Scholar
  28. 28.
    R. Janot, D. Guerard, Ball-milling: the behavior of graphite as a function of the dispersal media. Carbon 40, 2887–2896 (2002)CrossRefGoogle Scholar
  29. 29.
    X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25, 6436–6441 (2013)CrossRefGoogle Scholar
  30. 30.
    B. Patil, S. Ahn, S. Yu, H. Song, Y. Jeong, J.H. Kim, H. Ahn, Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 134, 366–375 (2018)CrossRefGoogle Scholar
  31. 31.
    L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nature Commun. 5, 3754 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Cleaner Electronics Group, College of Engineering, Design and Physical SciencesBrunel University LondonUxbridgeUK

Personalised recommendations