Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20823–20831 | Cite as

Influence of graphene on the structural and electrical properties of PCDTBT polymer

  • Fatma Ben Slama SweiiEmail author
  • Rabeb Bkakri
  • Walid Aloui
  • Abdelaziz Bouazizi
Article
  • 26 Downloads

Abstract

Structural evolution and electrical and dielectrical properties of hybrid structures based on PCDTBT: graphene nanocomposite were reported. The insertion of the graphene layers into the PCDTBT matrix is proved by the analysis of the Raman and the XRD curves obtaining for the PCDTBT: graphene hybrid nanocomposite. In fact, the Raman spectrum of PCDTBT: graphene nanocomposites shows the appearance of a new peak in 1620 nm position corresponds to the G-band of graphene. The effect of adding different weight ratios of graphene layers added (1.5, 2, and 2.5 wt%) into PCDTBT matrix on electrical properties was discussed in dark condition. The electrical parameters such as the ideality factors (n), the barrier height (ɸb), and the series resistance (Rs) were calculated. The charge transport was evaluated by space-charge-limited conduction mechanism. The dielectrical behavior shows a strong effect of graphene addition. It increases the trap state density (Nss). Moreover, a relaxation peak appeared in the imaginary parts of impedance (Z″) in the range of (ms) indicating a dipolar relaxation type.

Notes

References

  1. 1.
    D. Duché, F. Bencheikh, S. Ben Dkhil, M. Gaceur, N. Berton, O. Margeat, J. Ackermann, J.J. Simon, L. Escoubas, Sol. Energy Mater. Sol. Cell. 126, 197 (2014)Google Scholar
  2. 2.
    A. Mhamdi, F. Ben Slama Sweii, H. Saidi, F. Saidi, A. Bouazizi, J. Mol. Struct. 1160, 33 (2018)Google Scholar
  3. 3.
    H.J. Jhuo, P.N. Yeh, S.H. Liao, Y. Li, Y.S. Cheng, S.A. Chen, J. Chin. Chem. Soc. 61, 115 (2014)Google Scholar
  4. 4.
    E. Bundgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007)Google Scholar
  5. 5.
    Y.-T. Chang, S.-L. Hsu, M.-H. Su, K.-H. Wei, Adv. Funct. Mater. 17, 3326 (2007)Google Scholar
  6. 6.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)Google Scholar
  7. 7.
    S.E. AlGarni, A.A.A. Darwish, Sol. Energy Mater. Sol. Cells 160, 335 (2017)Google Scholar
  8. 8.
    S. Zhao, X. Pi, C. Mercier, Z. Yuan, B. Sun, D. Yang, Nano Energy 26, 305 (2016)Google Scholar
  9. 9.
    A. Vassilakopoulou, D. Papadatos, I. Koutselas, Appl. Mater. Today 5, 128 (2016)Google Scholar
  10. 10.
    R. Bkakri, N. Chehata, A. Ltaief, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, J. Phys. Chem. Solids 85, 206 (2015)Google Scholar
  11. 11.
    N. Chehata, A. Ltaief, R. Bkakri, A. Bouazizi, Mater. Sci. Semicond. Process. 22, 7 (2014)Google Scholar
  12. 12.
    Z. Liu, D. He, Y. Wang, H. Wu, J. Wang, Synth. Met. 160(9–10), 1036 (2010)Google Scholar
  13. 13.
    R. Bkakri, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, J. Lumin. 161, 264 (2015)Google Scholar
  14. 14.
    J. Li, F. Dierschke, J. Wu, A.C. Grimsdale, K. Müllen, J. Mater. Chem. 16(1), 96 (2006)Google Scholar
  15. 15.
    G. Sivakumar, T. Pratyusha, D. Gupta, W. Shen, Mater. Today Proc. 4(7), 6814 (2017)Google Scholar
  16. 16.
    T. Pratyusha, G. Sivakumar, A. Yella, D. Gupta, Mater. Today Proc. 4(4), 5067 (2017)Google Scholar
  17. 17.
    T. Pratyusha, G. Sivakumar, D. Gupta, A. Yella, Mater. Today Proc. 4(7), 6820 (2017)Google Scholar
  18. 18.
    B.R. Brian, J. Colloid Interface Sci. 369(1), 1 (2012)Google Scholar
  19. 19.
    M.J. Greaney, R.L. Brutchey, Mater. Today 18, 31 (2015)Google Scholar
  20. 20.
    W. Aloui, A. Ltaief, A. Bouazizi, Mat. Sci. Semicond. Proc. 27, 170 (2014)Google Scholar
  21. 21.
    Y. Shen, K. Li, N. Majumdar, J.C. Campbell, M.C. Gupta, Sol. Energy Mater. Sol. Cells 95(8), 2314 (2011)Google Scholar
  22. 22.
    J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 84, 3013 (2004)Google Scholar
  23. 23.
    A.E. Rakhshani, J. Appl. Phys. 90, 4265 (2001)Google Scholar
  24. 24.
    R. Bkakri, A. Sayari, E. Shalaan, S. Wageh, A.A. Al-Ghamdi, A. Bouazizi, Superlattices Microstruct. 76, 461 (2014)Google Scholar
  25. 25.
    M.E. Reish, S. Nam, W. Lee, H.Y. Woo, K.C. Gordon, J. Phys. Chem. C 116, 21255 (2012)Google Scholar
  26. 26.
    P. Jha, S.P. Koiry, V. Saxena, P. Veerender, A. Gusain, A.K. Chauhan, A.K. Debnath, D.K. Aswal, S.K. Gupta, Org. Electron. 14, 2635 (2013)Google Scholar
  27. 27.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)Google Scholar
  28. 28.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)Google Scholar
  29. 29.
    D.E. Motaung, G.F. Malgas, C.J. Arendse, Synth. Met. 160(9–10), 876–882 (2010)Google Scholar
  30. 30.
    S. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photon. 3, 297 (2009)Google Scholar
  31. 31.
    F. Aziz, M. Hassan Sayyad, K. Sulaiman, B. Majlis, K.S. Karimov, Z. Ahmad et al., Meas. Sci. Technol. 23, 014001 (2011)Google Scholar
  32. 32.
    Q. Zafar, K. Sulaiman, React. Funct. Polym. 105, 45 (2016)Google Scholar
  33. 33.
    A. Mhamdi, F.B.S. Sweii, A. Bouazizi, J. Electron. Mater. 48(1), 352 (2019)Google Scholar
  34. 34.
    A. Keffous, M. Siad, S. Mamma, Y. Belkacem, C. Lakhdar Chaouch, H. Menari, A. Dahmani, W. Chergui, Appl. Surf. Sci. 218(1–4), 337 (2003)Google Scholar
  35. 35.
    H. Saidi, A. Walid, A. Bouazizi, B.R. Herrero, F. Saidi, Mater. Res. Express 4(3), 035007 (2017)Google Scholar
  36. 36.
    W. Aloui, T. Adhikari, J.M. Nunzi, A. Bouazizi, K. Khirouni, Mat. Sci. Semicond. Proc. 39, 575 (2015)Google Scholar
  37. 37.
    S. Besbes, A. Ltaief, K. Reybier, L. Ponsonnet, N. Jaffrezic, J. Davenas, H. Ben Ouada, Synth. Metals 138, 197 (2003)Google Scholar
  38. 38.
    A.K. Kapoor, S. Annapoorni, V. Kumar, Semicond. Sci. Technol. 23, 035008 (2008)Google Scholar
  39. 39.
    H.C. Kao, W. Hwang, Electrical transport in solids (Pergamon, Oxford, 1981)Google Scholar
  40. 40.
    H. Kim, W. So, S. Moon, J. Korean Phys. Soc. 48(3), 441 (2006)Google Scholar
  41. 41.
    H. Saidi, W. Aloui, A. Bouazizi, J. Mater. Sci.: Mater. Electron. 29(21), 18051 (2018)Google Scholar
  42. 42.
    J.P. Tiwari, K. Shahi, Philos. Magn. 87, 4475 (2007)Google Scholar
  43. 43.
    W. Aloui, A. Ltaief, A. Bouazizi, Microelectron. Eng. 129, 96 (2014)Google Scholar
  44. 44.
    L. Beji, T.B. Jomaa, Z. Harrabi, A. Laribi, A. Missaoui, A. Bouazizi, Vacuum 80(5), 480 (2006)Google Scholar
  45. 45.
    P. Stallinga, H.L. Gomes, M. Murgia, K. Müllen, Org. Electron. 3, 43 (2002)Google Scholar
  46. 46.
    C.K. Suman, S. Noh, S. Kim, S.D. Lee, C. Lee, D. Lee, J. Park, J. Korean Phys. Soc. 53, 3278 (2008)Google Scholar
  47. 47.
    E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967)Google Scholar
  48. 48.
    S. Hamza, W. Aloui, A. Bouazizi, B. Herrero, S. Faouzi, J. Phys. Chem. Solids 107, 1 (2017)Google Scholar
  49. 49.
    W. Aloui, A. Ltaief, A. Bouazizi, Superlattices Microstruct. 75, 416 (2014)Google Scholar
  50. 50.
    A.N. Papathanassiou, J. Grammatikakis, S. Sakkopoulos, E. Vitoratos, E. Dalas, J. Phys. Chem. Solids 63, 1771 (2002)Google Scholar
  51. 51.
    S. Banerjee, A. Kumar, J. Non-Cryst. Solids 358, 2990 (2012)Google Scholar
  52. 52.
    O. Dhibi, A. Ltaief, S. Zghal, A. Bouazizi, Vacuum 99, 80 (2014)Google Scholar
  53. 53.
    M. Benzarti, H. Hrichi, N. Jaballah, R. BenChaâbane, M. Majdoub, H. BenOuada, Phys. B 407(7), 1051 (2012)Google Scholar
  54. 54.
    W. Aloui, T. Adhikari, J.M. Nunzi, A. Bouazizi, Mater. Res. Bull. 78, 141 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatma Ben Slama Sweii
    • 1
    Email author
  • Rabeb Bkakri
    • 1
  • Walid Aloui
    • 1
  • Abdelaziz Bouazizi
    • 1
  1. 1.Équipe Dispositifs Électroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Faculté des Sciences de Monastir, Université de Monastir Avenue de l’environnementMonastirTunisie

Personalised recommendations