Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20789–20800 | Cite as

Effect of Sn4+ doping on the dielectric and nonlinear JE properties of CaCu3Ti4.1O12 ceramics with a slight titanium excess for X9R capacitors

  • Ekaphan Swatsitang
  • Krissana Prompa
  • Thanin PutjusoEmail author
Article
  • 22 Downloads

Abstract

Sn4+ doped CaCu3Ti4.1−xSnxO12 (x = 0.00, 0.05, and 0.10) ceramics were prepared using a one-step polymer pyrolysis method. Variation of Δε′ < ± 15% over a temperature range of − 60 to 210 °C, very low tanδ ~ 0.009–0.012 and giant-ε′ ~ 6685–14,194 at 30 °C and 1 kHz were achieved in ceramics with x = 0.05 and 0.10 sintered at 1080 °C for 7 h. Furthermore, tanδ values of less than 0.03 and Δε′ < ± 10% over wide temperatures range of − 60 to 150 °C and − 60 to 200 °C were obtained in each of the ceramics. Both ceramics are promising candidate materials for X9R capacitor and X-P capacitor applications. The increase of grain boundary resistance (Rgb) with increasing Sn4+ content in the presence of a TiO2 phase are suggested to play an important role in extending Δε′ < ± 15% and tanδ < 0.05 over a wider temperature range.

Notes

Acknowledgements

This work was financially supported by Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Hua Hin, Prachuap khiri khan, Thailand. It was also supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0207/2558). The Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation and Khon Kaen University, Thailand is also thanked for co-financial support.

References

  1. 1.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)Google Scholar
  2. 2.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705–2711 (2017)Google Scholar
  3. 3.
    S.-Y. Chung, J.-H. Choi, J.-K. Choi, Appl. Phys. Lett. 91, 091912 (2007)Google Scholar
  4. 4.
    J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 612, 103–109 (2014)Google Scholar
  5. 5.
    Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Ceram. Int. 39, 6063–6068 (2013)Google Scholar
  6. 6.
    X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloys Compd. 708, 1026–1032 (2017)Google Scholar
  7. 7.
    Q. Zheng, H. Fan, C. Long, J. Alloys Compd. 511, 90–94 (2012)Google Scholar
  8. 8.
    S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Ceram. Int. 39, 8133–8139 (2013)Google Scholar
  9. 9.
    E. Swatsitang, A. Niyompan, T. Putjuso, J. Mater. Sci.: Mater. Electron. 24, 3514–3520 (2013)Google Scholar
  10. 10.
    J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)Google Scholar
  11. 11.
    J. Jumpatam, A. Mooltang, B. Putasaeng, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Ceram. Int. 42, 16287–16295 (2016)Google Scholar
  12. 12.
    H.M. Kotb, M.A. Mohamad, Chin. Phys. B 25, 128201 (2016)Google Scholar
  13. 13.
    J. Fan, S. Leng, Z. Cao, W. He, Y. Gao, J. Liu, G. Li, Ceram. Int. 45, 1001–1010 (2019)Google Scholar
  14. 14.
    J. Li, S. Yang, J. Liu, Y. Zhuang, Y. Tian, Q. Hu, Z. Xu, L. Wang, F. Li, J. Alloys Compd. 786, 377–384 (2019)Google Scholar
  15. 15.
    N. Thongyong, W. Tuichai, N. Chanlek, P. Thongbai, Ceram. Int. 43, 15466–15471 (2017)Google Scholar
  16. 16.
    W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, S. Maensiri, J. Alloys Compd. 703, 139–147 (2017)Google Scholar
  17. 17.
    N. Zhao, H. Fan, L. Ning, J. Ma, Y. Zhou, J. Am. Ceram. Soc. 101, 5578–5585 (2018)Google Scholar
  18. 18.
    J. Sui, H. Fan, B. Hu, L. Ning, Ceram. Int. 44, 18054–18059 (2018)Google Scholar
  19. 19.
    Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, J. Eur. Ceram. Soc. 37, 115–122 (2017)Google Scholar
  20. 20.
    J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, J. Eur. Ceram. Soc. 38, 137–143 (2018)Google Scholar
  21. 21.
    W. Yang, S. Yu, R. Sun, R. Du, Acta Mater. 59, 5593–5602 (2011)Google Scholar
  22. 22.
    F. Amaral, L.C. Costa, M.A. Valente, J. Non-Cryst, Solids 357, 775–781 (2011)Google Scholar
  23. 23.
    K. Prompa, E. Swatsitang, T. Putjuso, J. Mater. Sci.: Mater. Electron. 28, 15033–15042 (2017)Google Scholar
  24. 24.
    S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, J. Am. Ceram. Soc. 95, 1497–1500 (2012)Google Scholar
  25. 25.
    P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, J. Alloys Compd. 778, 625–632 (2019)Google Scholar
  26. 26.
    X. Ouyang, M. Habib, P. Cao, S. Wei, Z. Huang, W. Zhang, W. Gao, Ceram. Int. 41, 13447–13454 (2015)Google Scholar
  27. 27.
    S. De Almeida-Didry, C. Autret, C. Honstettre, A. Lucas, M. Zaghrioui, F. Pacreau, F. Gervais, Solid State Sci. 61, 102–105 (2016)Google Scholar
  28. 28.
    K. Prompa, E. Swatsitang, T. Putjuso, Ceram. Int. 44, 20739–20748 (2018)Google Scholar
  29. 29.
    K. Prompa, E. Swatsitang, C. Saiyasombat, T. Putjuso, Ceram. Int. 44, 13267–13277 (2018)Google Scholar
  30. 30.
    C. Sripakdee, K. Prompa, E. Swatsitang, T. Putjuso, J. Alloys Compd. 779, 521–530 (2019)Google Scholar
  31. 31.
    E. Swatsitang, K. Prompa, T. Putjuso, Appl. Surf. Sci. 478, 197–205 (2019)Google Scholar
  32. 32.
    E. Swatsitang, K. Prompa, T. Putjuso, J. Alloys Compd. 789, 231–239 (2019)Google Scholar
  33. 33.
    E. Swatsitang, K. Prompa, T. Putjuso, Appl. Surf. Sci. 484, 925–932 (2019)Google Scholar
  34. 34.
    E. Swatsitang, K. Prompa, T. Putjuso, J. Mater. Sci. Mater. Electron. 29, 12639–12651 (2018)Google Scholar
  35. 35.
    J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Mater. Des. 92, 494–498 (2016)Google Scholar
  36. 36.
    J. Boonlakhorn, P. Thongbai, Ceram. Int. 43, 12736–12741 (2017)Google Scholar
  37. 37.
    Z. Xu, H. Qiang, Y. Chen, Z. Chen, Mater. Chem. Phys. 191, 1–5 (2017)Google Scholar
  38. 38.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34, 2941–2950 (2014)Google Scholar
  39. 39.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Mater. Res. Bull. 77, 178–184 (2016)Google Scholar
  40. 40.
    P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 509, 7416–7420 (2011)Google Scholar
  41. 41.
    E. Swatsitang, T. Putjuso, J. Mater. Sci. Mater. Electron. 28, 18966–18976 (2017)Google Scholar
  42. 42.
    S. Gao, S. Wu, Y. Zhang, H. Yang, X. Wang, Mater. Sci. Eng. B 176, 68–71 (2011)Google Scholar
  43. 43.
    S.-F. Wang, J.-H. Li, Y.-F. Hsu, Y.-C. Wu, Y.-C. Lai, M.-H. Chen, J. Eur. Ceram. Soc. 33, 1793–1799 (2013)Google Scholar
  44. 44.
    J.A. Cortés, G. Cotrim, S. Orrego, A.Z. Simões, M.A. Ramírez, J. Alloys Compd. 735, 140–149 (2018)Google Scholar
  45. 45.
    E. Swatsitang, T. Putjuso, J. Eur. Ceram. Soc. 38, 4994–5001 (2018)Google Scholar
  46. 46.
    E. Jansen, W. Schäfer, G. Will, J. Appl. Crystallogr. 27, 492–496 (1994)Google Scholar
  47. 47.
    M. Newville, J. Synchrotron Radiat. 8, 96–100 (2001)Google Scholar
  48. 48.
    B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537–541 (2005)Google Scholar
  49. 49.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)Google Scholar
  50. 50.
    P. Thongbai, B. Putasaeng, T. Yamwong, V. Amornkitbamrung, S. Maensiri, J. Alloys Compd. 582, 747–753 (2014)Google Scholar
  51. 51.
    Z. Peng, P. Liang, Y. Xiang, H. Peng, X. Chao, Z. Yang, Ceram. Int. 44, 20311–20321 (2018)Google Scholar
  52. 52.
    P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 60, 695–703 (2014)Google Scholar
  53. 53.
    S. Rani, N. Ahlawat, K.M. Sangwan, R. Punia, A. Kumar, J. Alloys Compd. 769, 1102–1112 (2018)Google Scholar
  54. 54.
    Z. Kafi, A. Kompany, H. Arabi, A. KhorsandZak, J. Alloys. Compd. 727, 168–176 (2017)Google Scholar
  55. 55.
    A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications, 2nd edn. (Wiley, West Sussex, 2003), p. 310Google Scholar
  56. 56.
    T. Li, D. Liu, H. Dai, H. Xiang, Z. Chen, H. He, Z. Chen, J. Alloys Compd. 599, 145–149 (2014)Google Scholar
  57. 57.
    J. Jumpatam, P. Thongbai, T. Yamwong, S. Maensiri, Ceram. Int. 41, S498–S503 (2015)Google Scholar
  58. 58.
    L. Ramajo, R. Parra, J.A. Varela, M.M. Reboredo, M.A. Ramírez, M.S. Castro, J. Alloys Compd. 497, 349–353 (2010)Google Scholar
  59. 59.
    J. Zhao, C. Zhang, C. Hu, K. Lu, J. Eur. Ceram. Soc. 37, 3353–3359 (2017)Google Scholar
  60. 60.
    Z. Wang, H. Chen, T. Wang, Y. Xiao, W. Nian, J. Fan, J. Eur. Ceram. Soc. 38, 3847–3852 (2018)Google Scholar
  61. 61.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)Google Scholar
  62. 62.
    J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)Google Scholar
  63. 63.
    J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, J. Eur. Ceram. Soc. 38, 3505–3511 (2018)Google Scholar
  64. 64.
    P. Leret, J.F. Fernandez, J. de Frutos, D. Fernández-Hevia, J. Eur. Ceram. Soc. 27, 3901–3905 (2007)Google Scholar
  65. 65.
    P. Thongbai, J. Boonlakhorn, B. Putasaeng, T. Yamwong, S. Maensiri, J. Am. Ceram. Soc. 96, 379–381 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ekaphan Swatsitang
    • 1
    • 2
  • Krissana Prompa
    • 2
  • Thanin Putjuso
    • 3
    Email author
  1. 1.NANOTEC -KKU RNN on Nanomaterials Research and Innovation for EnergyKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.School of General Science, Faculty of Liberal ArtsRajamangala University of Technology RattanakosinHua HinThailand

Personalised recommendations