Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20778–20788 | Cite as

Synthesis of MoS2–MoO2/MWCNTs counter electrode for high-efficient dye-sensitized solar cells

  • Thana Tansoonton
  • Wasan MaiaugreeEmail author
  • Attaphol Karaphun
  • Isara Kotutha
  • Ekaphan SwatsitangEmail author


In this work, MoS2–MoO2 and MoS2–MoO2/MWCNTs counter electrodes (CEs) for dye-sensitized solar cells (DSSCs) were prepared by sulfurization of a one-pot hydrothermally obtained MoO2 film and MoO2/MWCNTs composite film on fluorine-doped tin oxide glasses at 500 °C for 2 h in argon atmosphere. The promoted MoS2 particles on a surface of MoS2–MoO2 and MoS2–MoO2/MWCNTs films were identified by X-ray diffraction to have a hexagonal structure. Morphology of MoO2, MoO2/MWCNTs, MoS2–MoO2, and MoS2–MoO2/MWCNTs CEs was studied using field emission scanning electron microscope and transmission electron microscope. Functional groups in MoS2–MoO2/MWCNTs sample were identified by Raman spectroscopy. Results of cyclic voltammetry and electrochemical impedance spectroscopy displayed a high electrocatalytic activity performance and low charge transfer resistance of MoS2–MoO2/MWCNTs CE as compared to those of MoO2, MoO2/MWCNTs, and MoS2–MoO2 CEs. Interestingly, the DSSC based on MoS2–MoO2/MWCNTs CE could provide the higher power conversion efficiency of 7.79% compared to that of 7.26% for Pt-based DSSC.



The research capability enhancement program through graduate student scholarship, Grant no. SCGS-2018-02, Faculty of Science, Khon Kaen University, is gratefully acknowledged. We are also grateful for the co–financial support of Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage and the Institute of Nanomaterials Research and Innovation of Energy (IN-RIE), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.

Supplementary material

10854_2019_2445_MOESM1_ESM.docx (149 kb)
Supplementary material 1 (DOCX 149 kb)


  1. 1.
    B. O’regan, M. Gratzel, Nature 353, 737–740 (1993)CrossRefGoogle Scholar
  2. 2.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem. 6, 242 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Wu, T. Ma, J. Phys. Chem. C 118, 16727–16742 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel, T. Ma, J. Am. Chem. Soc. 134, 3419–3428 (2012)CrossRefGoogle Scholar
  5. 5.
    N. Huang, G. Li, Z. Xia, F. Zheng, H. Huang, W. Li, C. Xiang, Y. Sun, P. Sun, X. Sun, Electrochim. Acta 235, 182–190 (2017)CrossRefGoogle Scholar
  6. 6.
    I. Raj, X. Xu, W. Yang, F. Yang, L. Hou, Y. Li, Electrochim. Acta 212, 614–620 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Kumar, S.S. Nemala, S. Mallick, P. Bhargava, Sol. Energy 144, 215–220 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Li, H. Sui, K. Zhao, W. Zhang, X. Li, S. Liu, K. Yang, M. Wu, Y. Zhang, Electrochim. Acta 259, 188–195 (2018)CrossRefGoogle Scholar
  9. 9.
    S.L. Li, H.H. Min, F. Xu, L. Tong, J. Chen, C.Y. Zhu, L.T. Sun, RSC Adv. (2016). CrossRefGoogle Scholar
  10. 10.
    M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, T. Ma, Phys. Chem. Chem. Phys. 13, 19298–19301 (2011)CrossRefGoogle Scholar
  11. 11.
    V.H.V. Quy, E. Vijayakumar, P. Ho, J. Park, J.A. Rajesh, J. Kwon, J. Chae, J. Kim, S. Kang, K. Ahn, Electrochim. Acta 260, 716–725 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Yue, W. Zhang, J. Wu, Q. Jing, Electrochim. Acta 112, 656–665 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Liu, S. He, Y. Dou, D. Pan, Y. Feng, G. Qian, J. Xu, S. Miao, Electrochim. Acta 144, 119–126 (2014)CrossRefGoogle Scholar
  14. 14.
    S.Y. Tai, C.J. Liu, S.W. Chou, F.S.S. Chien, J.Y. Lin, T.W. Lin, J. Mater. Chem. 22, 24753–24759 (2012)CrossRefGoogle Scholar
  15. 15.
    K.D.A. Kumar, S. Valanarasu, K. Jeyadheepan, H. Kim, D. Vikraman, J. Mater. Sci.: Mater. Electron. 29, 3648–3658 (2018)Google Scholar
  16. 16.
    K. Shomalian, M.-M. Bagheri-Mohagheghi, M. Ardyanian, Appl. Phys. A 123, 93 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Al-Mamum, H. Zhang, P. Liu, Y. Wang, J. Cao, H. Zhao, RSC Adv. 4, 21277–21283 (2014)CrossRefGoogle Scholar
  18. 18.
    G.L. Freyr, R. Tenne, M.J. Matthews, M.S. Dresselhhaus, G. Dresselhus, Phys. Rev. B 60, 4 (1999)Google Scholar
  19. 19.
    S. Vangelista, E. Cinquanta, C. Martella, M. Alia, M. Longo, A. Lamperti, R. Mantovan, F.B. Basset, F. Pezzoli, A. Molle, Nanotechnology 27, 175703 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Feng, H. Yan, R. Zhang, J. Liu, J. Vac. Sci. Technol. A36, 05G507 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Sirioj, S. Pimanpang, M. Towannang, W. Maiaugree, S. Phumying, W. Jarenboon, V. Amornkitbamrung, Appl. Phys. Lett. 100, 243303 (2012)CrossRefGoogle Scholar
  22. 22.
    P.A. Spevack, N.S. Mclntyre, J. Phys. Chem. 96, 9029–9035 (1992)CrossRefGoogle Scholar
  23. 23.
    M.A. Camacho-Lopez, L. Escobar-Alarcon, M. Picquart, R. Arroyo, G. Cordoba, E. Haro-Poniatowski, Opt. Mater. 33, 480–484 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Kim, J. Yun, S. Na, J. Ind. Eng. Chem. 29, 71–77 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Maiaugree, T. Tansoonton, V. Amornkitbamrung, E. Swatsitang, Curr. Appl. Phys. 19, 1355–1361 (2019)CrossRefGoogle Scholar
  26. 26.
    M.R. Al-bahrani, W. Ahmad, H.F. Mehnane, Y. Chen, Z. Cheng, Y. Gao, Nano-Micro Lett. 7(3), 298–306 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Ma, W. Shen, F. Yu, J. Power Sources 351, 58–66 (2017)CrossRefGoogle Scholar
  28. 28.
    D. Vikraman, S.A. Patil, S. Hussain, N. Mengal, H. Kim, S. Hoon, J. Jung, H. Kim, H.J. Park, Dyes Pigments 151, 7–14 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Jeong, J. Kim, B. Koo, H.J. Son, D. Kim, M.J. Ko, J. Power Sources 330, 104–110 (2016)CrossRefGoogle Scholar
  30. 30.
    C. Yu, X. Meng, X. Song, S. Liang, Q. Dong, G. Wang, C. Hao, X. Yang, T. Ma, P.M. Ajayan, J. Qiu, Carbon 100, 474–483 (2016)CrossRefGoogle Scholar
  31. 31.
    C.K. Cheng, C.H. Lin, H.C. Wu, C.C.M. Ma, T.K. Yeh, H.Y. Chou, C.H. Tsai, C.K. Hsieh, Nanoscale Res. Lett. 11, 117 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Theerthagiri, R.A. Senthil, B. Senthilumar, A.R. Polu, J. Madhavan, M. Ashokkumar, J. Solid State Chem. 252, 43–71 (2017)CrossRefGoogle Scholar
  33. 33.
    E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, RSC Adv. 7, 28234–28290 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Energy Innovation and Heat Pipe Technology Research Unit, Department of Physics, Faculty of ScienceMahasarakham UniversityMahasarakhamThailand
  3. 3.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  4. 4.Department of Applied Physics, Faculty of EngineeringRajamangala University of Technology Isan Khon Kaen CampusKhon KaenThailand
  5. 5.Institute of Nanomaterials Research and Innovation for Energy (IN-RIE)Khon Kaen UniversityKhon KaenThailand

Personalised recommendations