Advertisement

Effect of molybdenum on structural, optical and microwave dielectric properties of copper tungstate

  • Anterdipan Singh
  • Sameer Kumar Tiwari
  • Pritam Yadav
  • Bibek Kumar Sonu
  • Rolly Verma
  • Ela SinhaEmail author
  • S. K. RoutEmail author
Article
  • 39 Downloads

Abstract

This article covers the structural and the optical properties of CuMoxW1−xO4 ceramics for x = 0, 0.02, 0.04, 0.06 and 0.08 prepared by solid-state reaction route. Chemical composition and microstructure of the prepared CuMoxW1−xO4 ceramic samples were characterized by means of X-ray diffraction, scanning electron microscopy, UV–Vis spectrophotometry and FT-IR spectroscopy. X-ray diffraction analysis confirmed the formation of monophasic wolframite structure whose cell volume is increased with increased Mo content. The Reitveld refinement of X-ray powder revealed the triclinic structure with \(P\overline{1}\) symmetry. A reduction in optical band gap from 2.4 to 2.0 eV is obtained with increased Mo concentration. This reduction in band gap suggested its possible utilization in the visible region of electromagnetic spectrum. The photoluminescence (PL) peaks are shifted towards lower energy. The microwave dielectric parameters were measured by the Hakki–Coleman method. The dielectric constant (ε′) and dielectric loss (tan δ) decreased from 17.049 to 12.375 and 0.0156 to 0.0129, respectively, with the increase in Mo content.

Notes

Acknowledgements

All authors gratefully acknowledge the financial supports from the Science and Engineering Research Board, Department of Science and Technology (DST), Government of India, through Project Nos. SB/FT/CS-044/2013 and EMR/2016/001582. The authors also thank the central instrumentation facility, Birla Institute of Technology, Mesra, for providing necessary infrastructure to carry out different experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J.C. Hill, Synthesis and Characterization of Tungsten-Based and Bismuth-Based Photoelectrodes for Solar Energy Conversion (Purdue University, 2012)Google Scholar
  2. 2.
    M. Gaudon, C. Carbonera, A.E. Thiry, A. Demourgues, P. Deniard, C. Payen, J.F. Letard, S. Jobic, Adaptable thermochromism in the CuMo1−xWxO4 series (0 < x < 0.1): a behavior related to a first-order phase transition with a transition temperature depending on x. Inorg. Chem. 46, 10200–10207 (2007)CrossRefGoogle Scholar
  3. 3.
    Q. Liang, Y. Guo, N. Zhang, Q. Qian, Y. Hu, J. Hu, Z. Li, Z. Zou, Improved water-splitting performances of CuW1−xMoxO4 photoanodes synthesized by spray pyrolysis. Sci. China Mater. 61, 1297–1304 (2018)CrossRefGoogle Scholar
  4. 4.
    S.J. Naik, A.V. Salker, Solid state studies on cobalt and copper tungstates nano materials. Solid State Sci. 12, 2065–2072 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Steiner, R. Salzer, W. Reichelt, Temperature dependence of the optical properties of CuMoO4. Fresenius’ J. Anal. Chem. 370, 731–734 (2001)CrossRefGoogle Scholar
  6. 6.
    J.C. Hill, Y. Ping, G.A. Galli, K.-S. Choi, Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption. Energy Environ. Sci. 6, 2440–2446 (2013)CrossRefGoogle Scholar
  7. 7.
    B.C. Schwarz, H. Ehrenberg, H. Weitzel, H. Fuess, Investigation on the influence of particular structure parameters on the anisotropic spin-exchange interactions in the distorted wolframite-type oxides Cu(MoxW1−x)O4. Inorg. Chem. 46, 378–380 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Ehrenberg, M. Wiesmann, J. Garcia-Jaca, H. Weitzel, H. Fuess, Magnetic structures of the high-pressure modifications of CoMoO4 and CuMoO4. J. Magn. Magn. Mater. 182, 152–160 (1998)CrossRefGoogle Scholar
  9. 9.
    J.E. Yourey, K.J. Pyper, J.B. Kurtz, B.M. Bartlett, Chemical stability of CuWO4 for photoelectrochemical water oxidation. J. Phys. Chem. C 117, 8708–8718 (2013)CrossRefGoogle Scholar
  10. 10.
    R.K. Selvan, A. Gedanken, The sonochemical synthesis and characterization of Cu(1−x)Ni(x)WO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution. Nanotechnology 20, 105602 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Rodríquez-Carvajal, T. Roisnel, Line broadening analysis using FullProf*: determination of microstructural properties. Mater. Sci. Forum 443–444, 123–126 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Kumar, D. Varshney, Crystal structure refinement of Bi1−xNdxFeO3 multiferroic by the Rietveld method. Ceram. Int. 38, 3935–3942 (2012)CrossRefGoogle Scholar
  13. 13.
    S.K. Ghosh, S.K. Rout, A. Tiwari, P. Yadav, J.C. Sczancoski, M.G.R. Filho, L.S. Cavalcante, Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1−xSrx)MoO4 ceramics. J. Mater. Sci.: Mater. Electron. 26, 8319–8335 (2015)Google Scholar
  14. 14.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)CrossRefGoogle Scholar
  16. 16.
    A.E.B. Lima, M.J.S. Costa, R.S. Santos, N.C. Batista, L.S. Cavalcante, E. Longo, G.E. Luz, Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim. Acta 256, 139–145 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Ruiz-Fuertes, D. Errandonea, A. Segura, F.J. Manjón, Z. Zhu, C.Y. Tu, Growth, characterization, and high-pressure optical studies of CuWO4. High Press. Res. 28, 565–570 (2008)CrossRefGoogle Scholar
  18. 18.
    E. Souza, C. Dalmaschio, M. Filho, G. Luz Jr., R. Santos, E. Longo, L. Cavalcante, Structural refinement and photocatalytic properties of CuWO4 crystals. Microsc. Adv. Sci. Res. Educ. 2, 894–902 (2014)Google Scholar
  19. 19.
    F.D. Hardcastle, I.E. Wachs, Determination of the molecular structures of tungstates by Raman spectroscopy. J. Raman Spectrosc. 26, 397–405 (1995)CrossRefGoogle Scholar
  20. 20.
    M. Crane, R.L. Frost, P.A. Williams, J. Theo Kloprogge, Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. J. Raman Spectrosc. 33, 62–66 (2002)CrossRefGoogle Scholar
  21. 21.
    I.C. Nogueira, L.S. Cavalcante, P.F.S. Pereira, M.M. de Jesus, J.M. Rivas Mercury, N.C. Batista, M.S. Li, E. Longo, Rietveld refinement, morphology and optical properties of (Ba1−xSrx)MoO4 crystals. J. Appl. Crystallogr. 46, 1434–1446 (2013)CrossRefGoogle Scholar
  22. 22.
    E.L.S. Souza, J.C. Sczancoski, I.C. Nogueira, M.A.P. Almeida, M.O. Orlandi, M.S. Li, R.A.S. Luz, M.G.R. Filho, E. Longo, L.S. Cavalcante, Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals. Ultrason. Sonochem. 38, 256–270 (2017)CrossRefGoogle Scholar
  23. 23.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, Facile chemical synthesis and characterization of copper tungstate nanoparticles. J. Inorg. Organomet. Polym Mater. 24, 333–339 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Priya, E. Sinha, S.K. Rout, Structural, optical and microwave dielectric properties of Ba1−xSrxWO4 ceramics prepared by solid state reaction route. Solid State Sci. 20, 40–45 (2013)CrossRefGoogle Scholar
  25. 25.
    X.A. López, A.F. Fuentes, M.M. Zaragoza, J.A. Díaz Guillén, J.S. Gutiérrez, A.L. Ortiz, V. Collins-Martínez, Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni Co, Cu and Mn) tungstates. Int. J. Hydrogen Energy 41, 23312–23317 (2016)CrossRefGoogle Scholar
  26. 26.
    R.F. Gonçalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L.V. Rosa, A.P.A. Marques, Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO4:Eu3+ microcrystals. Cryst Eng Comm 17, 1654–1666 (2015)CrossRefGoogle Scholar
  27. 27.
    L.S. Cavalcante, V.M. Longo, J.C. Sczancoski, M.A.P. Almeida, A.A. Batista, J.A. Varela, M.O. Orlandi, E. Longo, M.S. Li, Electronic structure, growth mechanism and photoluminescence of CaWO4crystals. CrystEngComm 14, 853–868 (2012)CrossRefGoogle Scholar
  28. 28.
    O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4. J. Alloys Compd. 480, 184–189 (2009)CrossRefGoogle Scholar
  29. 29.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  30. 30.
    S.H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations