Advertisement

Phase-change characteristics of carbon-doped GeSbSe thin films for PRAM applications

  • J. H. Kim
  • J. H. Park
  • D.-H. KoEmail author
Article
  • 3 Downloads

Abstract

Phase-change random access memory (PRAM) is a promising way to overcome problems associated with dynamic random access memory and flash memory, namely, scaling them down to meet increasing performance and reliability demands. Herein, we evaluate carbon-doped Ge10Sb90Se8 (GSS-C) as a potential chalcogenide material for PRAM. The carbon-doping effects on the physical and electrical properties of GSS film were investigated at carbon concentrations from 0 to 11 at.%. The crystal structures were analyzed via X-ray diffraction, which demonstrated that the undoped GSS films had multiple phases; however, incorporating carbon led to a single phase with a rhombohedral crystal structure (Sb phase). The grain size and change in thickness upon phase transition both decreased with increasing carbon concentration, whereas the crystallization temperature and sheet resistance of the amorphous and crystalline states increased. X-ray photoelectron spectroscopy revealed that adding carbon leads to the formation of C–Ge and C–Sb bonds. Moreover, as the carbon concentration increased, the on/off ratio and optical band gap increased. These results imply that GSS-C possesses advantageous thermal stability, reliability, and electrical properties, which strongly suggest that GSS-C would be a promising candidate for phase-change memory applications.

Notes

Supplementary material

10854_2019_2442_MOESM1_ESM.tiff (2.2 mb)
Supplementary material 1 TEM-EDS analysis of GSS films doped with different carbon concentrations after annealing at 400°C for 1 h: (a) 0 at.% (undoped GSS), (b) 6 at.%, (c) 8.5 at.%, and (d) 11 at.% (TIFF 2227 kb)

References

  1. 1.
    J.I. Lee, S.L. Cho, D.H. Ahn, M.S. Kang, S.W. Nam, H.K. Kang, C.H. Chung, IEEE Electron Device Lett. 32, 1113 (2011)CrossRefGoogle Scholar
  2. 2.
    R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, H. Tanida, Nano Lett. 10, 414 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Terao, T. Morikawa, T. Ohta, Jpn. J. Appl. Phys. 48, 080001 (2009)CrossRefGoogle Scholar
  4. 4.
    S.-W. Nam, H.-S. Chung, Y.C. Lo, L. Qi, J. Li, Y. Lu, A.T.C. Johnson, Y. Jung, P. Nukala, R. Agarwal, Science 336, 1561 (2012)CrossRefGoogle Scholar
  5. 5.
    S.J. Ahn, Y.N. Hwang, Y.J. Song, S.H. Lee, S.Y. Lee, J.H. Park, C.W. Jeong, K.C. Ryoo, J.M. Shin, J.H. Park, Y. Fai, J.H. Oh, G.H. Koh, G.T. Jeong, S.H. Joo, S.H. Choi, Y.H. Son, J.C. Shin, Y.T. Kim, H.S. Jeong, K. Kim, in Symposium on Digest of Technical Paper. VLSI Technology (2005), p. 98Google Scholar
  6. 6.
    S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.O. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, in Symposium on Digest of Technical Paper. B.I. VLSI Technology (2005), p. 96Google Scholar
  7. 7.
    D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Song, D. Yao, Z. Song, L. Gao, Z. Zhang, L. Li, L. Shen, L. Wu, B. Liu, Y. Cheng, S. Feng, Nanoscale Res. Lett. 10, 89 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Huang, G.P. Kissling, A. Jollyes, P.N. Bartlett, A.L. Hector, W. Levason, G. Reid, C.H.K. De Groot, Nanoscale Res. Lett. 10, 432 (2015)CrossRefGoogle Scholar
  10. 10.
    A.L. Lacaita, A. Redaelli, Microelectron. Eng. 109, 351 (2013)CrossRefGoogle Scholar
  11. 11.
    J.D. Maimon, K.K. Hunt, L. Burcin, J. Rodgers, IEEE Trans. Nucl. Sci. 50, 1878 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Padilla, G.W. Burr, K. Virwani, A. Debunne, C.T. Rettner, T. Topuria, P.M. Rice, B. Jackson, D. Dupouy, A.J. Kellock, R.M. Shelby, K. Gopalakrishnan, R.S. Shenoy, B.N. Kurdi, in IEDM 2010, IEEE 2010, pp. 29.4.1–29.4.4Google Scholar
  13. 13.
    N. Yamada, E. Ohno, N. Akahira, K.I. Nishiuchi, K.I. Nagata, M. Takao, Jpn. J. Appl. Phys. 26, 61 (1987)CrossRefGoogle Scholar
  14. 14.
    M. Aoukar, P.D. Szkutnik, D. Jourde, B. Pelissier, P. Michallon, P. Noe, C. Vallee, J. Phys. D 48, 265203 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Zou, X. Zhu, Y. Hu, Y. Sui, J. Zhang, Z. Song, J. Mater. Sci.: Mater. Electron. 28, 17719 (2017)Google Scholar
  16. 16.
    Y.M. Lee, S.Y. Lee, T. Sasaki, K. Kim, D. Ahn, M.-C. Jung, Sci. Rep. 6, 38663 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Gu, Z. Song, T. Zhang, B. Liu, S. Feng, Solid-State Electron. 54, 443 (2010)CrossRefGoogle Scholar
  18. 18.
    J.H. Kim, J.H. Park, D.-H. Ko, Thin Solid Films 653, 173 (2018)CrossRefGoogle Scholar
  19. 19.
    J.H. Kim, D.-S. Byeon, J.H. Park, D.-H. Ko, J. Mater. Res. 32, 2449 (2017)CrossRefGoogle Scholar
  20. 20.
    H.S. Kim, Y.T. Kim, H.S. Hwang, M.Y. Sung, Phys. Status Solidi RRL 8(3), 243 (2014)CrossRefGoogle Scholar
  21. 21.
    K.B. Borisenko, Y.X. Chen, S.A. Song, D.J.H. Cockayne, Chem. Mater. 21, 5244 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Privitera, E. Rimini, R. Zonca, Appl. Phys. Lett. 85, 3044 (2004)CrossRefGoogle Scholar
  23. 23.
    X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, S. Feng, Appl. Phys. Lett. 101, 142104 (2012)CrossRefGoogle Scholar
  24. 24.
    J.H. Park, S.-W. Kim, J.H. Kim, Z. Wu, S.L. Cho, D. Ahn, D.H. Ahn, J.M. Lee, S.U. Nam, D.-H. Ko, J. Appl. Phys. 117, 115703 (2015)CrossRefGoogle Scholar
  25. 25.
    H.S. Kim, Y.T. Kim, H.S. Hwang, M.Y. Sung, Phys. Status Solidi Rapid Res. Lett. 8, 243 (2014)CrossRefGoogle Scholar
  26. 26.
    G.B. Beneventi, L. Perniola, V. Sousa, E. Gourvest, S. Maitrejean, J.C. Bastien, A. Bastard, B. Hyot, A. Fargeix, C. Jahan, J.F. Nodin, A. Persico, A. Fantini, D. Blachier, A. Toffoli, S. Loubriat, A. Roule, S. Lhostis, H. Feldis, G. Reimbold, T. Billon, B. De Salvo, L. Larcher, P. Pavan, D. Bensahel, P. Mazoyer, R. Annunziata, P. Zuliani, F. Boulanger, Solid State Electron. 65, 197–204 (2011)CrossRefGoogle Scholar
  27. 27.
    E. Cho, Y. Youn, S. Han, Appl. Phys. Lett. 99, 183501 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Horii, J.H. Yi, J.H. Park, Y.H. Ha, I.G. Baek, S.O. Park, Y.N. Hwang, S.H. Lee, Y.T. Kim, K.H. Lee, U.I. Chung, J.T. Moon, in Symposium on Digest of Technical Paper. VLSI Technology 2003, p. 177Google Scholar
  29. 29.
    T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nature Mater. 10, 202 (2011)CrossRefGoogle Scholar
  30. 30.
    M.J. Kang, S.Y. Choi, D. Wamwangi, K. Wang, C. Steimer, M. Wuttig, J. Appl. Phys. 98, 14904 (2005)CrossRefGoogle Scholar
  31. 31.
    W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, S. Feng, Appl. Phys. Lett. 105, 243113 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Vilcarromero, F.C. Marques, Appl. Phys. A 70, 581 (2000)CrossRefGoogle Scholar
  33. 33.
    B. Liu, Z.-T. Song, T. Zhang, S.-L. Feng, B. Chen, Chin. Phys. 13, 1947 (2004)CrossRefGoogle Scholar
  34. 34.
    C.D. Wagner, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy (Physical Electronics Division), 1st edn. (Perkin-Elmer Corp, Eden Prairie, 1979)Google Scholar
  35. 35.
    T. Ueno, A. Odajima, Jpn. J. Appl. Phys. 19, L519 (1980)CrossRefGoogle Scholar
  36. 36.
    J. Wang, Z. Deng, Y. Li, Mater. Res. Bull. 37, 495 (2002)CrossRefGoogle Scholar
  37. 37.
    B.S. Lee, J.R. Abelson, S.G. Bishop, D.H. Kang, B.K. Cheong, K.B. Kim, J. Appl. Phys. 97, 093509 (2005)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, J. Feng, B. Cai, Proc. SPIE 7125, 71251T–71251T-8 (2008)CrossRefGoogle Scholar
  39. 39.
    W.K. Njoroge, H.W. Wöltgens, M. Wuttig, J. Vac. Sci. Technol. A 20, 230 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulSouth Korea
  2. 2.Process Development Team, Semiconductor R&D CenterSamsung Electronics Co., Ltd.Hwasung-CitySouth Korea

Personalised recommendations