Advertisement

Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants

  • K. V. Karthik
  • Ch. Venkata ReddyEmail author
  • Kakarla Raghava Reddy
  • R. Ravishankar
  • Ganesh Sanjeev
  • Raghavendra V. Kulkarni
  • Nagaraj P. Shetti
  • A. V. RaghuEmail author
Article
  • 13 Downloads

Abstract

Barium titanate nanoparticles (NPs) were synthesised using a modified sol–gel technique. The structure and morphology of NPs were described using various techniques. The photocatalytic activities of the NPs were evaluated by the photocatalytic degradation of Eriochrome black T and potassium dichromate in the presence of UV light irradiation. The barium titanate NP catalyst exhibited higher photocatalytic activity for the degradation of pollutants effectively at room temperature. The different parameters effects such as pollutant initial concentration, loading of photocatalyst, initial pH values of the solution were also examined on the decolourization efficiency of the pollutants. The highest degradation efficiency was achieved for Eriochrome dark T (93%) and potassium dichromate (92%) pollutants. The prepared NPs showed 26 μmol g−1 hydrogen generation within 5 h.

Notes

Acknowledgement

This study is financially supported by Board of Research in Nuclear Sciences and Department of Atomic Energy (BRNS-DAE), Bhabha Atomic Research Centre, Government of India, Mumbai, India under major research Grant No. 2013/34/4/BRNS/0483.

References

  1. 1.
    W. Hou, S.B. Cronin, Adv. Funct. Mater. 23, 1662 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Miclea, C. Tanasoiu, I. Spanulescu, C.F. Miclea, A. Gheorghiu, L. Amarande, M. Cioangher, C.T. Miclea, Rom. J. Inf. Sci. Technol. 10, 335 (2007)Google Scholar
  3. 3.
    K.R. Reddy, K.V. Karthik, S.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Zhao, X. Zhang, J. Liu, C. Wang, J. Li, H. Jin, Ceram. Int. 44, 15929 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, ACS Appl. Mater. Interfaces 4, 4853 (2012)CrossRefGoogle Scholar
  6. 6.
    C.L. Lai, H.L. Huang, J.H. Shen, K.K. Wang, D. Gan, Ceram. Int. 41, 5041 (2015)CrossRefGoogle Scholar
  7. 7.
    H.C. Huang, C.L. Yang, M.S. Wang, X.G. Ma, Spectrochim Acta A 208, 65 (2019)CrossRefGoogle Scholar
  8. 8.
    M. Nageri, V. Kumar, Mater. Chem. Phys. 213, 400 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Xiong, R. Tian, X. Lin, D. Chu, S. Li, J. Nanomater 16, 173 (2015)Google Scholar
  10. 10.
    M. Zhang, Q. Liang, S. Xu, Z. Li, Optik 127, 7993 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Li, J.W. Ko, W.B. Ko, Eurasian Chem. Technol. J. 17, 281 (2015)CrossRefGoogle Scholar
  12. 12.
    V.P. Pavlović, B.D. Stojanović, V.B. Pavlović, Z. Marinković-Stanojević, L. Živković, M.M. Ristić, Sci. Sinter 40, 21 (2008)CrossRefGoogle Scholar
  13. 13.
    Q. Li, R. Li, L. Zong, J. He, X. Wang, J. Yang, Int. J. Hydrog. Energy 38, 12977 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Ctibor, H. Ageorge, V. Stengl, N. Murafa, I. Pis, T. Zahoranova, V. Nehasil, Z. Pala, Ceram. Int. 37, 2561 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Xian, H.H. Yang, L.J. Di, J.F. Dai, J. Alloy. Compd. 622, 1098 (2015)CrossRefGoogle Scholar
  16. 16.
    E.A. Mgbemeje, S.M. Akhtar, Y.O. Bong, C.D. Kue, J. Mater. Sci. Eng. 5, 5 (2016)Google Scholar
  17. 17.
    J.Q. Qi, T. Peng, Y.M. Hu, L. Sun, Y. Wang, W.P. Chen, L.T. Li, C.W. Nan, H.L.W. Chan, Nanoscale Res. Lett. 6, 466 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Rastogi, H.S. Kushwaha, R. Vaish, Electron. Mater. Lett. 12, 281 (2016)CrossRefGoogle Scholar
  19. 19.
    N.K. Veldurthi, N.K. Rao Eswar, S.A. Singh, G. Madras, Int. J. Hydrog. Energy 43, 22929 (2018)CrossRefGoogle Scholar
  20. 20.
    Ch. Venkata Reddy, I. Neelakanta Reddy, J. Shim, D. Kim, K. Yoo, Ceram. Int. 44, 12329 (2018)CrossRefGoogle Scholar
  21. 21.
    Ch. Venkata Reddy, V.S.V. Prabhakar, R.V.S.S.N. Ravikumar, S.J. Moon, J. Shim, J. Magn. Magn. Mater. 394, 70 (2015)CrossRefGoogle Scholar
  22. 22.
    G.H. Margarita, G.M. Antonieta, J.C.R. de Felipe, J.V. David, C. Geneviève, R. De la Elder, B. Damien, Int. J. Mol. Sci. 10, 4088 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Tsay, T. Fang, J. Am. Ceram. Soc. 82, 1409 (1999)CrossRefGoogle Scholar
  24. 24.
    S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Lett. 61, 538 (2007)CrossRefGoogle Scholar
  25. 25.
    J.L. Wang, L.J. Xu, Crit. Rev. Environ. Sci. Technol. 42, 251 (2012)CrossRefGoogle Scholar
  26. 26.
    W. Yuan, C. Zhang, H. Wei, Q. Wang, K. Li, RSC Adv. 7, 22825 (2017)CrossRefGoogle Scholar
  27. 27.
    J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, A.J. López-Peinado, R.M. Martín-Aranda, Appl. Catal. B 71, 44 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. V. Karthik
    • 1
  • Ch. Venkata Reddy
    • 2
    Email author
  • Kakarla Raghava Reddy
    • 3
  • R. Ravishankar
    • 1
  • Ganesh Sanjeev
    • 4
  • Raghavendra V. Kulkarni
    • 5
  • Nagaraj P. Shetti
    • 6
    • 8
  • A. V. Raghu
    • 7
    Email author
  1. 1.Department of Chemical EngineeringDayananda Sagar College of EngineeringBangaloreIndia
  2. 2.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea
  3. 3.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
  4. 4.Department of Studies in Physics, Microtron CentreMangalore UniversityMangalagangotriIndia
  5. 5.Department of PharmaceuticsBLDEA’s SSM College of Pharmacy and Research CentreVijayapuraIndia
  6. 6.Electrochemistry and Materials Group, Department of ChemistryK.L.E. Institute of TechnologyHubliIndia
  7. 7.Department of Chemistry, Center for Emerging Technology, School of Engineering & TechnologyJain UniversityBangaloreIndia
  8. 8.Visvesvaraya Technological UniversityBelgaumIndia

Personalised recommendations