Advertisement

Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde

  • Xinyu Zhang
  • Yue Sun
  • Yu Fan
  • Zhifu Liu
  • Zhigang Zeng
  • Hongbin Zhao
  • Xiaohong WangEmail author
  • Jiaqiang XuEmail author
Article
  • 10 Downloads

Abstract

HC(NH2)2SnI3 (FASnI3) organotin halide perovskite was firstly synthesized by a solution method and then decorated with Pt nanoparticles by immersion method. HC(NH2)2SnI3/SnO2/Pt was obtained by calcining the sample to oxidize part of the HC(NH2)2SnI3 into SnO2 at different temperature in air. The structural, morphological characteristics and formaldehyde sensing performance were studied at length. The results indicated that HC(NH2)2SnI3/SnO2/Pt obtained at 240 °C showed superior sensing properties, of which the response to 10 ppm formaldehyde at 80 °C was 47.5 and the response and recovery time was 40 s and 37 s, respectively. The corresponding detection limit was estimated as low as 65 ppb. The high performance of the sample could be ascribed to the reason that the introduction of moderate HC(NH2)2SnI3 into SnO2 could lead to the formation of n-n heterojunction, and the organic–inorganic hybrid perovskites with narrow bandgap could generate abundant electrons from low-temperature excitation and the electrons could be transferred through the n-n heterojunction to SnO2. Consequently, the optimum operating temperature for formaldehyde detection could be reduced by 120 °C compared with pure SnO2. Moreover, the Pt nanoparticles improved response value more than twofold generally, which might be attributed to spillover effect and high catalytic activity.

Notes

Acknowledgements

This research was supported by National Key Research and Development Program of China (2017YFB0102900), the Shanghai Natural Science Foundation (19ZR1418900), Opening Project of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (KLIFMD201704), National Natural Science Foundation of China (61671284; U1704255), Shanghai Pujiang Program (17PJD016) and the Shanghai Municipal Education Commission (Peak Discipline Construction program).We also acknowledge the Instrumental Analysis and Research Center of Shanghai University for providing measurement services.

References

  1. 1.
    W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, In2O3-SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloys Compd. 746, 36–44 (2018).  https://doi.org/10.1016/j.jallcom.2018.02.171 CrossRefGoogle Scholar
  2. 2.
    D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, R. Luo, Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36–43 (2019).  https://doi.org/10.1016/j.jpcs.2018.08.028 CrossRefGoogle Scholar
  3. 3.
    D. Wang, K. Wan, M. Zhang, H. Li, P. Wang, X. Wang, J. Yang, Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens. Actuators B 283, 714–723 (2019).  https://doi.org/10.1016/j.snb.2018.11.125 CrossRefGoogle Scholar
  4. 4.
    Z. Bo, M. Yuan, S. Mao, X. Chen, J. Yan, K. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B 256, 1011–1020 (2018).  https://doi.org/10.1016/j.snb.2017.10.043 CrossRefGoogle Scholar
  5. 5.
    F. Han, F. Li, S. Liu, L. Niu, Sub-stoichiometric WO2.9 as co-catalyst with platinum for formaldehyde gas sensor with high sensitivity. Sens. Actuators B 263, 369–376 (2018).  https://doi.org/10.1016/j.snb.2018.02.103 CrossRefGoogle Scholar
  6. 6.
    H.J. Park, S.Y. Hong, D.H. Chun, S.W. Kang, J.C. Park, D.-S. Lee, A highly susceptive mesoporous hematite microcube architecture for sustainable P-type formaldehyde gas sensors. Sens. Actuators B 287, 437–444 (2019).  https://doi.org/10.1016/j.snb.2019.01.153 CrossRefGoogle Scholar
  7. 7.
    S. Wang, J. Cao, W. Cui, L. Fan, X. Li, D. Li, Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuators B 255, 159–165 (2018).  https://doi.org/10.1016/j.snb.2017.08.054 CrossRefGoogle Scholar
  8. 8.
    T. Wang, B. Liu, Q. Li, S. Wang, Controllable construction of Cr2O3-ZnO hierarchical heterostructures and their formaldehyde gas sensing properties. Mater. Lett. 221, 260–263 (2018).  https://doi.org/10.1016/j.matlet.2018.03.073 CrossRefGoogle Scholar
  9. 9.
    J. Hu, T. Wang, Y. Wang, D. Huang, G. He, Y. Han, N. Hu, Y. Su, Z. Zhou, Y. Zhang, Z. Yang, Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sens. Actuators B 263, 120–128 (2018).  https://doi.org/10.1016/j.snb.2018.02.035 CrossRefGoogle Scholar
  10. 10.
    Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao, Y. Wang, Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuators B 238, 264–273 (2017).  https://doi.org/10.1016/j.snb.2016.07.051 CrossRefGoogle Scholar
  11. 11.
    Y. Chen, X. Zhang, Z. Liu, Z. Zeng, H. Zhao, X. Wang, J. Xu, Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic-inorganic hybrid perovskite incorporating tin dioxide. Mikrochim. Acta 186, 47 (2019).  https://doi.org/10.1007/s00604-018-3155-1 CrossRefGoogle Scholar
  12. 12.
    G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, J. Xu, Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B 283, 590–601 (2019).  https://doi.org/10.1016/j.snb.2018.09.117 CrossRefGoogle Scholar
  13. 13.
    C. Liu, H. Gao, L. Wang, T. Wang, X. Yang, P. Sun, Y. Gao, X. Liang, F. Liu, H. Song, G. Lu, Facile synthesis and the enhanced sensing properties of Pt-loaded α-Fe2O3 porous nanospheres. Sens. Actuators B 252, 1153–1162 (2017).  https://doi.org/10.1016/j.snb.2017.06.012 CrossRefGoogle Scholar
  14. 14.
    X. Gao, F. Li, R. Wang, T. Zhang, A formaldehyde sensor: significant role of p-n heterojunction in gas-sensitive core-shell nanofibers. Sens. Actuators B 258, 1230–1241 (2018).  https://doi.org/10.1016/j.snb.2017.11.088 CrossRefGoogle Scholar
  15. 15.
    L. Lei, Z. Chunmei, C. Wei, Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale 7, 12133 (2015)CrossRefGoogle Scholar
  16. 16.
    G. Li, X. Zhang, H. Lu, C. Yan, K. Chen, H. Lu, J. Gao, Z. Yang, G. Zhu, C. Wang, Z. He, Ethanol sensing properties and reduced sensor resistance using porous Nb2O5-TiO2 n-n junction nanofibers. Sens. Actuators B 283, 602–612 (2019).  https://doi.org/10.1016/j.snb.2018.12.074 CrossRefGoogle Scholar
  17. 17.
    B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).  https://doi.org/10.1021/acs.chemrev.5b00715 CrossRefGoogle Scholar
  18. 18.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Li, Z.K. Wang, M.P. Zhuo, Y. Hu, K.H. Hu, Q.Q. Ye, S.M. Jain, Y.G. Yang, X.Y. Gao, L.S. Liao, Pb–Sn–Cu ternary organometallic halide perovskite solar cells. Adv. Mater. 30, e1800258 (2018).  https://doi.org/10.1002/adma.201800258 CrossRefGoogle Scholar
  20. 20.
    L. Gildo-Ortiz, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J.T. Guillén-Bonilla, A. Guillén-Cervantes, J. Santoyo-Salazar, H. Guillén-Bonilla, A simple route for the preparation of nanostructured GdCoO3 via the solution method, as well as its characterization and its response to certain gases. Results Phys. 12, 475–483 (2019).  https://doi.org/10.1016/j.rinp.2018.11.072 CrossRefGoogle Scholar
  21. 21.
    B. Wang, Q. Yu, S. Zhang, T. Wang, P. Sun, X. Chuai, G. Lu, Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sens. Actuators B 258, 1215–1222 (2018).  https://doi.org/10.1016/j.snb.2017.12.018 CrossRefGoogle Scholar
  22. 22.
    P. Zhang, H. Qin, W. Lv, H. Zhang, J. Hu, Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations. Sens. Actuators B 246, 9–19 (2017).  https://doi.org/10.1016/j.snb.2017.01.096 CrossRefGoogle Scholar
  23. 23.
    M.-Y. Zhu, L.-X. Zhang, J. Yin, J.-J. Chen, L.-J. Bie, B.D. Fahlman, Physisorption induced p-xylene gas-sensing performance of (C4H9NH3)2PbI4 layered perovskite. Sens. Actuators B 282, 659–664 (2019).  https://doi.org/10.1016/j.snb.2018.11.124 CrossRefGoogle Scholar
  24. 24.
    Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. Engl. 55, 3447–3450 (2016).  https://doi.org/10.1002/anie.201511792 CrossRefGoogle Scholar
  25. 25.
    C. Bernal, K. Yang, First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3. J. Phys. Chem. C 118, 24383–24388 (2014).  https://doi.org/10.1021/jp509358f CrossRefGoogle Scholar
  26. 26.
    F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv. Funct. Mater. 26, 3417–3423 (2016).  https://doi.org/10.1002/adfm.201505127 CrossRefGoogle Scholar
  27. 27.
    J. Kim, J.S. Yun, X. Wen, A.M. Soufiani, C.F.J. Lau, B. Wilkinson, J. Seidel, M.A. Green, S. Huang, A.W.Y. Ho-Baillie, Nucleation and growth control of HC(NH2)2PbI3 for planar perovskite solar cell. J. Phys. Chem. C 120, 11262–11267 (2016).  https://doi.org/10.1021/acs.jpcc.6b02443 CrossRefGoogle Scholar
  28. 28.
    W. Zhang, Y. Chen, X. Wang, X. Yan, J. Xu, Z. Zeng, Formation of n-n type heterojunction-based tin organic-inorganic hybrid perovskite composites and their functions in the photocatalytic field. Phys. Chem. Chem. Phys. 20, 6980–6989 (2018).  https://doi.org/10.1039/c7cp07819f CrossRefGoogle Scholar
  29. 29.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).  https://doi.org/10.1021/ic401215x CrossRefGoogle Scholar
  30. 30.
    M.R. Gao, Z.Y. Lin, J. Jiang, C.H. Cui, Y.R. Zheng, S.H. Yu, Completely green synthesis of colloid Adams’ catalyst alpha-PtO2 nanocrystals and derivative Pt nanocrystals with high activity and stability for oxygen reduction. Chemistry (Easton) 18, 8423–8429 (2012).  https://doi.org/10.1002/chem.201200353 CrossRefGoogle Scholar
  31. 31.
    W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.G. Xiong, Y. Yan, Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28, 9333–9340 (2016).  https://doi.org/10.1002/adma.201602992 CrossRefGoogle Scholar
  32. 32.
    P. Wang, J. Guan, D.T.K. Galeschuk, Y. Yao, C.F. He, S. Jiang, S. Zhang, Y. Liu, M. Jin, C. Jin, Y. Song, Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8, 2119–2125 (2017).  https://doi.org/10.1021/acs.jpclett.7b00665 CrossRefGoogle Scholar
  33. 33.
    L. Dimesso, A. Quintilla, Y.M. Kim, U. Lemmer, W. Jaegermann, Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng. B 204, 27–33 (2016).  https://doi.org/10.1016/j.mseb.2015.11.006 CrossRefGoogle Scholar
  34. 34.
    M. Tonezzer, J.-H. Kim, J.-H. Lee, S. Iannotta, S.S. Kim, Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sens. Actuators B 281, 670–678 (2019).  https://doi.org/10.1016/j.snb.2018.10.102 CrossRefGoogle Scholar
  35. 35.
    N. Li, Y. Fan, Y. Shi, Q. Xiang, X. Wang, J. Xu, A Low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens. Actuators B (2019).  https://doi.org/10.1016/j.snb.2019.04.061 CrossRefGoogle Scholar
  36. 36.
    N.S. Sabri, M.S.M. Deni, A. Zakaria, M.K. Talari, Effect of Mn doping on structural and optical properties of SnO2 nanoparticles prepared by mechanochemical processing. Phys Procedia 25, 233–239 (2012).  https://doi.org/10.1016/j.phpro.2012.03.077 CrossRefGoogle Scholar
  37. 37.
    Y. Wang, Y. Zeng, L. Wang, Z. Lou, L. Qiao, H. Tian, W. Zheng, Ultrathin nanorod-assembled SnO2 hollow cubes for high sensitive n-butanol detection. Sens. Actuators B 283, 693–704 (2019).  https://doi.org/10.1016/j.snb.2018.12.016 CrossRefGoogle Scholar
  38. 38.
    D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, F. Meng, Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B 273, 418–428 (2018).  https://doi.org/10.1016/j.snb.2018.06.030 CrossRefGoogle Scholar
  39. 39.
    R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017).  https://doi.org/10.1016/j.snb.2017.05.161 CrossRefGoogle Scholar
  40. 40.
    T. Li, W. Zeng, H. Long, Z. Wang, Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sens. Actuators B 231, 120–128 (2016).  https://doi.org/10.1016/j.snb.2016.03.003 CrossRefGoogle Scholar
  41. 41.
    L. Li, J. Tan, M. Dun, X. Huang, Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators B 248, 85–91 (2017).  https://doi.org/10.1016/j.snb.2017.03.119 CrossRefGoogle Scholar
  42. 42.
    D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens. Actuators B 250, 533–542 (2017).  https://doi.org/10.1016/j.snb.2017.04.164 CrossRefGoogle Scholar
  43. 43.
    Y. He, H. Li, X. Zou, N. Bai, Y. Cao, Y. Cao, M. Fan, G.-D. Li, Platinum dioxide activated porous SnO2 microspheres for the detection of trace formaldehyde at low operating temperature. Sens. Actuators B 244, 475–481 (2017).  https://doi.org/10.1016/j.snb.2017.01.014 CrossRefGoogle Scholar
  44. 44.
    T. Yang, M. Zhu, K. Gu, C. Zhai, Q. Zhao, X. Yang, M. Zhang, Facile synthesis of SnO2 nanoparticles for improved formaldehyde detection. New J. Chem. 42, 13612–13618 (2018).  https://doi.org/10.1039/c8nj01923a CrossRefGoogle Scholar
  45. 45.
    J.-H. Kim, J.-H. Lee, A. Mirzaei, H.W. Kim, S.S. Kim, SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties and sensing mechanisms. Sens. Actuators B 258, 204–214 (2018).  https://doi.org/10.1016/j.snb.2017.11.063 CrossRefGoogle Scholar
  46. 46.
    S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens. Actuators B 149, 28–33 (2010).  https://doi.org/10.1016/j.snb.2010.06.039 CrossRefGoogle Scholar
  47. 47.
    Z. Ye, H. Tai, T. Xie, Z. Yuan, C. Liu, Y. Jiang, Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B 223, 149–156 (2016).  https://doi.org/10.1016/j.snb.2015.09.102 CrossRefGoogle Scholar
  48. 48.
    J.-H. Kim, J.-H. Lee, A. Mirzaei, H.W. Kim, S.S. Kim, Optimization and gas sensing mechanism of n-SnO2-p-Co3O4 composite nanofibers. Sens. Actuators B 248, 500–511 (2017).  https://doi.org/10.1016/j.snb.2017.04.029 CrossRefGoogle Scholar
  49. 49.
    H. Xu, J. Ju, W. Li, J. Zhang, J. Wang, B. Cao, Superior triethylamine-sensing properties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B 228, 634–642 (2016).  https://doi.org/10.1016/j.snb.2016.01.059 CrossRefGoogle Scholar
  50. 50.
    L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanocomposites. Sens. Actuators B 232, 91–101 (2016).  https://doi.org/10.1016/j.snb.2016.02.135 CrossRefGoogle Scholar
  51. 51.
    C. Dong, Q. Li, G. Chen, X. Xiao, Y. Wang, Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sens. Actuators B 220, 171–179 (2015).  https://doi.org/10.1016/j.snb.2015.05.056 CrossRefGoogle Scholar
  52. 52.
    L. Guo, F. Chen, N. Xie, X. Kou, C. Wang, Y. Sun, F. Liu, X. Liang, Y. Gao, X. Yan, T. Zhang, G. Lu, Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B 272, 185–194 (2018).  https://doi.org/10.1016/j.snb.2018.05.161 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NEST Lab, Department of Chemistry, Department of Physics, College of ScienceShanghai UniversityShanghaiChina
  2. 2.CAS Key Laboratory of Inorganic Functional Materials and DevicesShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations