Crosslinking dependence of trap distribution and breakdown performance of crosslinked polyethylene

  • Zhimin Yan
  • Kai Yang
  • Yuanyuan Zhang
  • Shihang Wang
  • Jianying LiEmail author


The DC breakdown performance and trap distribution of crosslinked polyethylene (XLPE) with different crosslinking degrees were investigated in this paper. Results demonstrate that the breakdown strength initially rises from 276 to 352 kV/mm, followed by a decline to 300 kV/mm with the increase of crosslinking degree from 0 to 79.5%. The peak value occurs at the crosslinking degree of 52.1%. The deep trap density determined by isothermal surface potential decay (ISPD) displays a similar trend, sharing a same turning point with breakdown strength. In addition, an increasing crosslinking degree will lead to a lower crystallinity and an expanding amorphous region, while the content of by-products shows no obvious difference in XLPE samples due to the degassing process. It is therefore proposed that the crosslinking process can change the morphology of XLPE and influence the trap distribution. The formation of crosslinking network will increase the deep trap density, whereas the expanding amorphous region will result in the decrease of it. The increased deep trap density can cause homo-charges accumulation near the surface of XLPE and further suppress the charges injection from electrode. On the other hand, the charges in the bulk are easier to be captured and thus retard the charge transport. Dual dynamic processes contribute to the promotion of breakdown performance for XLPE.



The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (No. 2018YF-B0905802), and Research Project of State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE19118).


  1. 1.
    V. Englund, R. Huuva, S.M. Gubanski, T. Hjertberg, IEEE Trans. Dielectr. Electr. Insul. 16(5), 1455–1461 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Li, H. Li, F. Zhou, S. Wang, J. Zhao, B. Ouyang, J. Mater. Sci.: Mater. Electron. 27(1), 806–810 (2016)Google Scholar
  3. 3.
    H. Li, J. Li, Y. Ma, Q. Yan, B. Ouyang, J. Mater. Sci.: Mater. Electron. 29(5), 3696–3703 (2018)Google Scholar
  4. 4.
    G. Chen, Z.Q. Xu, J. Appl. Phys. 106(12), 1237071–1237075 (2009)CrossRefGoogle Scholar
  5. 5.
    D.M. Min, M. Cho, S.T. Li, A.R. Khan, IEEE Trans. Dielectr. Electr. Insul. 19(6), 2206–2215 (2012)CrossRefGoogle Scholar
  6. 6.
    G.C. Montanari, G. Mazzanti, F. Palmieri, A. Motori, G. Perego, S. Serra, J. Phys. D 34(18), 2902–2911 (2001)CrossRefGoogle Scholar
  7. 7.
    W.W. Wang, D.M. Min, S.T. Li, IEEE Trans. Dielectr. Electr. Insul. 23(1), 564–572 (2016)CrossRefGoogle Scholar
  8. 8.
    G.C. Montanari, C. Laurent, G. Teyssedre, A. Campus, U.H. Nilsson, IEEE Trans. Dielectr. Electr. Insul. 12(3), 438–446 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Andrews, R.N. Hampton, A. Smedberg, D. Wald, V. Waschk, W. Weissenberg, IEEE Trans. Insul. Mag. 22(6), 6–16 (2006)Google Scholar
  10. 10.
    N. Hirai, R. Minami, Y. Ohki, M. Okashita, and T. Maeno, International Conference on Solid Dielectrics (ICSD). 450–455 (2011)Google Scholar
  11. 11.
    Y. Maeno, N. Hirai, Y. Ohki, T. Takada, M. Okashita, T. Maeno, IEEE Trans. Dielectr. Electr. Insul. 12(1), 90–97 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Kim, Z. Jin, P. Jiang, Polym. Test. 25(4), 553–561 (2006)CrossRefGoogle Scholar
  13. 13.
    F.W. Shen, H.A. McKellop, R. Salovey, J. Polym. Sci. Pol. Phys. 34(6), 1063–1077 (1996)CrossRefGoogle Scholar
  14. 14.
    J. Chen, H. Zhao, Z. Xu, X.X. Zhang, J.M. Yang, X.J. Zheng, J.S. Lei, Polym. Test. 56, 83–90 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Cacciari, G. Mazzanti, G.C. Montanari, IEEE Trans. Dielectr. Electr. Insul. 1(1), 153–159 (1994)CrossRefGoogle Scholar
  16. 16.
    W. Kai, T. Okamoto, Y. Suzuoki, J. Appl. Phys. 98(11), 114102 (2005)CrossRefGoogle Scholar
  17. 17.
    F.S. Zhou, J.Y. Li, M.J. Liu, D.M. Min, S.T. Li, R. Xia, IEEE Trans. Dielectr. Electr. Insul. 23(2), 1174–1182 (2016)CrossRefGoogle Scholar
  18. 18.
    L.A. Dissado, J.C. Fothergill, Electrical Degradation and Breakdown in Polymers (Peter Peregrinus Ltd., IET, 1992)CrossRefGoogle Scholar
  19. 19.
    F.S. Zhou, J.Y. Li, Z.M. Yan, X. Zhang, Y.Q. Yang, M.J. Liu, D.M. Min, S.T. Li, IEEE Trans. Dielectr. Electr. Insul. 23(6), 3742–3751 (2016)CrossRefGoogle Scholar
  20. 20.
    H.V. Berlepsch, J. Phys. D 18(6), 1155–1170 (1985)CrossRefGoogle Scholar
  21. 21.
    J.V. Gulmine, L. Akcelrud, Polym. Test. 25(7), 932–942 (2006)CrossRefGoogle Scholar
  22. 22.
    X. Liu, Q.X. Yu, M.H. Liu, Y.G. Li, L.S. Zhong, M.L. Fu, S. Hou, IEEE Trans. Dielectr. Electr. Insul. 24(3), 1476–1484 (2017)CrossRefGoogle Scholar
  23. 23.
    K.S. Simis, A. Bistolfi, A. Bellare, L.A. Pruitt, Biomaterials 27(9), 1688–1694 (2006)CrossRefGoogle Scholar
  24. 24.
    J.P. Jones, J.P. Llewellyn, T.J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 12(5), 951–966 (2005)CrossRefGoogle Scholar
  25. 25.
    R.H. Olley, D.C. Bassett, Polymer 23(12), 1707–1710 (1982)CrossRefGoogle Scholar
  26. 26.
    M.C. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, G. Santorol, Phys. Rev. Lett. 87(7), 076802 (2001)CrossRefGoogle Scholar
  27. 27.
    S. Serra, E. Tosatti, S. Iarlori, S. Scandolo, G. Santoro, Phys. Rev. B. 62(7), 4389–4393 (2000)CrossRefGoogle Scholar
  28. 28.
    G. Teyssedre, C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 12(5), 857–875 (2005)CrossRefGoogle Scholar
  29. 29.
    S.T. Li, Y.W. Zhu, D.M. Min, G. Chen, Sci. Rep. (UK) 6, 32588 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhimin Yan
    • 1
  • Kai Yang
    • 1
  • Yuanyuan Zhang
    • 1
  • Shihang Wang
    • 1
  • Jianying Li
    • 1
    Email author
  1. 1.State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong UniversityXi’anChina

Personalised recommendations