Advertisement

Ti-doped indium gallium oxide electrolyte–insulator–semiconductor membranes for multiple ions and solutes detectors

  • Chyuan-Haur Kao
  • Chia Shao Liu
  • Chun Yu Xu
  • Chun Fu Lin
  • Hsiang ChenEmail author
Article
  • 22 Downloads

Abstract

Detecting multiple ions and solutes in human body is important to medical examinations of patients. In this study, Ti-doped InGaO (IGO) electrolyte–insulator–semiconductor (EIS) biosensors were fabricated for multiple ion and solute sensing capability. To optimize the sensing performance, rapid thermal annealing could enhance up to 70% hydrogen ion sensitivity and more than 50% multiple ion and solute sensitivity compared with the as-deposited sample owing to improvement of material quality. Ti-doped IGO EIS multianalyte biosensors show promise for future portable biosensing applications.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan (ROC), under the contract of MOST 107-2221-E-182-036 and MOST 107-2221-E-260-015-MY3. This work was supported by Chang Gung University under the contract of CMRPD2H0181.

References

  1. 1.
    A. César-Razquin, B. Snijder, T. Frappier-Brinton et al., Cell 162, 478 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Matusiewicz, Acta Biomater. 10, 2379 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Heikenfeld, A. Jajack, J. Rogers et al., Lab Chip 18, 217 (2018)CrossRefGoogle Scholar
  4. 4.
    M.M. Ahmadi, G.A. Jullien, IEEE Trans. Biomed. Circuits Syst. 3, 169 (2009)CrossRefGoogle Scholar
  5. 5.
    X. Wang, Z. Liu, T. Zhang, Small 13, 1602790 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Kumar, J. Kumar, S. Panda, IEEE Electron Device Lett. 37, 500 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Huser, P.M. Gehrig, W.E. Morf et al., Anal. Chem. 63, 1380 (1991)CrossRefGoogle Scholar
  8. 8.
    M. Azarang, A. Shuhaimi, R. Yousefi, M. Sookhakian, J. Appl. Phys. 116, 084307 (2014)CrossRefGoogle Scholar
  9. 9.
    P.J. Dorman, W.J. Sullivan, R.F. Pitts, J. Clin. Investig. 33, 82 (1954)CrossRefGoogle Scholar
  10. 10.
    N.W. Carter, D.W. Seldin, H. Teng, J. Clin. Investig. 38, 949 (1959)CrossRefGoogle Scholar
  11. 11.
    H. Suzuki, K. Kondo, T. Saruta, Hypertension 3, 566 (1981)CrossRefGoogle Scholar
  12. 12.
    M. Vedovato, G. Lepore, A. Coracina et al., Diabetologia 47, 300 (2004)CrossRefGoogle Scholar
  13. 13.
    A.L. Peters, E.O. Buschur, J.B. Buse, P. Cohan, J.C. Diner, I.B. Hirsch, Diabetes Care 38, 1687 (2015)CrossRefGoogle Scholar
  14. 14.
    N.D. Vaziri, J. Yuan, K. Norris, Am. J. Nephrol. 37, 1 (2013)CrossRefGoogle Scholar
  15. 15.
    W. Honda, S. Harada, T. Arie, S. Akita, K. Takei, Adv. Func. Mater. 24, 3299 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, ACS Nano 4, 1790 (2010)CrossRefGoogle Scholar
  17. 17.
    A.K. Shukla, J. Alam, M.A. Ansari, M. Alhoshan, M. Alam, A. Kaushik, Mater. Chem. Phys. 7, 4829 (2019)Google Scholar
  18. 18.
    C.H. Kao, H. Chen, M.L. Lee et al., Sens. Actuators B Chem. 194, 503 (2014)CrossRefGoogle Scholar
  19. 19.
    C.-H. Kao, H. Chen, L.-T. Kuo et al., Sens. Actuators B Chem. 194, 419 (2014)CrossRefGoogle Scholar
  20. 20.
    C.F. Lin, C.H. Kao, C.Y. Lin, C.S. Liu, Y.W. Liu, Sci. Rep. 9, 3078 (2019)CrossRefGoogle Scholar
  21. 21.
    Y.S. Rim, H.-W. Choi, K.H. Kim, H.J. Kim, J. Phys. D Appl. Phys. 49, 075112 (2016)CrossRefGoogle Scholar
  22. 22.
    S.-P. Chang, L.-Y. Chang, J.-Y. Li, Sensors 16, 2145 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Gao, X.-Y. Yu, R.-X. Xu, J.-H. Liu, X.-J. Huang, ACS Appl. Mater. Interfaces 4, 4672 (2012)CrossRefGoogle Scholar
  24. 24.
    A.A. Ensafi, S.S. Afiuni, B. Rezaei, J. Electroanal. Chem. 816, 160 (2018)CrossRefGoogle Scholar
  25. 25.
    O. Akhavan, E. Ghaderi, J. Phys. Chem. C 113, 20214 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Aikawa, 3D Res. 8, 35 (2017)CrossRefGoogle Scholar
  27. 27.
    M.L. Lee, C.H. Kao, H. Chen, C.Y. Lin, Y.T. Chung, K.M. Chang, Ceram. Int. 43, 3043 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Tsujimura, M. Yokoyama, K. Kimura, Anal. Chem. 67, 2401 (1995)CrossRefGoogle Scholar
  29. 29.
    E. Shoko, B. McLellan, A. Dicks, J.D. Da Costa, Int. J. Coal Geol. 65, 213 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Nielsen, M.A. Knepper, Am. J. Physiol. Renal Physiol. 265, F204 (1993)CrossRefGoogle Scholar
  31. 31.
    K. Singh, B.-S. Lou, J.-L. Her, T.-M. Pan, J. Electrochem. Soc. 166, B187 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chyuan-Haur Kao
    • 1
    • 2
    • 3
  • Chia Shao Liu
    • 1
  • Chun Yu Xu
    • 4
  • Chun Fu Lin
    • 1
  • Hsiang Chen
    • 4
    • 5
    Email author
  1. 1.Department of Electronic EngineeringChang Gung UniversityTaoyüanTaiwan, ROC
  2. 2.Department of Nephrology, Chang Gung Memorial Hospital, Kidney Research CenterChang Gung UniversityTaoyüanTaiwan, ROC
  3. 3.Department of Electronic EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan, ROC
  4. 4.Department of Applied Materials and Optoelectronic EngineeringNational Chi Nan UniversityPuliTaiwan, ROC
  5. 5.Department of Electrical EngineeringYale UniversityNew HavenUSA

Personalised recommendations