Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20537–20543 | Cite as

Neodymium doped zinc oxide for ultersensitive SERS substrate

  • Ming Gao
  • Jiacheng Yao
  • Yingnan Quan
  • Jinghai Yang
  • Pengwei Huo
  • Jiangdong Dai
  • Yongsheng YanEmail author
  • Changchang MaEmail author
Article
  • 40 Downloads

Abstract

We report on the fabrication of neodymium doped zinc oxide (ZNO) for use in surface-enhanced Raman spectroscopy (SERS). The SERS enhancement of ZNO nanoparticles exhibited 7 times higher than that of pure zinc oxide. We analyzed in detail the enhancement mechanism of the ZNO. The detection limit of malachite green (MG) was 10−7 M, and the SERS signal intensity showed a good linear relationship with the logarithm of the MG concentration (R2 = 0.9817). This indicates that ZNO is an excellent SERS substrate for trace analysis and ultrasensitive molecular sensing. This study provides a new strategy to improve the overall SERS property of ZnO-based materials via chemical doping.

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province (BK20180884); Postdoctoral Fund of Jiangsu Province (1501067C).

References

  1. 1.
    Z.W. Cheng, B.W. Yang, Q.C. Chen, W.C. Ji, Z.M. Shen, Chem. Eng. J. 332, 351 (2018)Google Scholar
  2. 2.
    X.B. Feng, N. Gan, H.R. Zhang, Q. Yan, Q.L. Jiang, Biosens. Bioelectron. 74, 587 (2015)Google Scholar
  3. 3.
    X.L. Li, Y. Zhang, L.Y. Jing, X.H. He, Chem. Eng. J. 292, 326 (2016)Google Scholar
  4. 4.
    J.H. Park, J.Y. Byun, H. Jang, D. Hong, M.G. Kim, Biosens. Bioelectron. 97, 292 (2017)Google Scholar
  5. 5.
    S. Mostafa, M. Mahnaz, S.N. Ali, J. Mater. Sci.: Mater. Electron. 27, 474 (2016)Google Scholar
  6. 6.
    K. Nithiyadevi, K. Ravichandran, J. Mater. Sci.: Mater. Electron. 28, 10929 (2017)Google Scholar
  7. 7.
    L.J. Cheng, X.M. Hu, L. Hao, J. Mater. Sci.: Mater. Electron. 29, 6316 (2017)Google Scholar
  8. 8.
    R. Mirzajani, S. Ahmadi, J. Ind. Eng. Chem. 23, 171 (2015)Google Scholar
  9. 9.
    A.A.M. Stolker, T. Zuidema, M.W.F. Nielen, Trends Anal. Chem. 26, 967 (2007)Google Scholar
  10. 10.
    K. Halme, E. Lindfors, K. Peltonen, J. Chromatogr. B 845, 74 (2007)Google Scholar
  11. 11.
    Y. Zhang, W. Yu, L. Pei, K. Lai, B.A. Rasco, Food Chem. 169, 80 (2015)Google Scholar
  12. 12.
    M.J.M. Bueno, S. Herrera, A. Uclés, A. Agüera, M.D. Hernando, O. Shimelis, M. Rudolfsson, A.R. Fernández-Alba, Anal. Chim. Acta 665, 47 (2010)Google Scholar
  13. 13.
    Y.Z. Huang, Y.R. Fang, Z.L. Zhang, L. Zhu, M.T. Sun, Light-Sci. Appl. 3, 199 (2014)Google Scholar
  14. 14.
    Z.D. Zhu, B.F. Bai, O.B. You, Q.Q. Li, S.S. Fan, Light-Sci. Appl. 4, 296 (2015)Google Scholar
  15. 15.
    S. Cong, Z. Wang, W. Gong, Z.G. Chen, W.B. Lu, J.R. Lombardi, Z.G. Zhao, Nat. Commun. 10, 678 (2019)Google Scholar
  16. 16.
    G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Mater. 12, 719 (2013)Google Scholar
  17. 17.
    S. Feng, M.C. Santos, B.R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A.L. Elías, Y. Lei, N. Perea-López, M. Endo, M.H. Pan, M.A. Pimenta, M. Terrones, Sci. Adv. 2, 1600322 (2016)Google Scholar
  18. 18.
    L.B. Yang, Q.Q. Sang, J. Du, M. Yang, X.L. Li, Y. Shen, X.X. Han, X. Jiang, B. Zhao, Phys. Chem. Chem. Phys. 20, 15149 (2018)Google Scholar
  19. 19.
    Z.H. Zheng, S. Cong, W.B. Gong, J.N. Xuan, G.H. Li, W.B. Lu, F.X. Geng, Z.G. Zhao, Nat. Commun. 8, 1993 (2017)Google Scholar
  20. 20.
    X.X. Xue, W.D. Ruan, L.B. Yang, W. Ji, Y.F. Xie, L. Chen, W. Song, B. Zhao, J.R. Lombardi, J. Raman Spectrosc. 43, 61 (2012)Google Scholar
  21. 21.
    G.Z. Xing, J.B. Yi, F. Yan, T. Wu, S. Li, Appl. Phys. Lett. 104, 202411 (2014)Google Scholar
  22. 22.
    M. Kumaran, R. Gopalakrishnan, J. Sol-Gel Sci. Technol. 62, 193 (2012)Google Scholar
  23. 23.
    S.N. Ali, M. Mahnaz, H.M. Mostafa, J. Mol. Liq. 216, 1–5 (2016)Google Scholar
  24. 24.
    M. Mansournia, S. Rafizadeh, S.M. Mashkani, Ceram. Int. 42, 907 (2016)Google Scholar
  25. 25.
    M. Mansournia, S. Rafizadeh, S.M. Mashkani, M. Motaghedifard, Mater. Sci. Eng. C 65, 303 (2016)Google Scholar
  26. 26.
    T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)Google Scholar
  27. 27.
    M. Gao, C. Yan, B.Z. Li, L.J. Zhou, J.C. Yao, Y.J. Zhang, H.L. Liu, L.H. Cao, Y.T. Cao, J.H. Yang, Y.X. Wang, J. Alloys Compd. 724, 537 (2017)Google Scholar
  28. 28.
    J.J. Lee, G.Z. Xing, J.B. Yi, T. Chen, M. Ionescu, S. Li, Appl. Phys. Lett. 104, 012405 (2014)Google Scholar
  29. 29.
    D.D. Wang, G.Z. Xing, F. Yan, Y.S. Yan, S. Li, Appl. Phys. Lett. 104, 022412 (2014)Google Scholar
  30. 30.
    S. Yang, D.L. Han, M. Gao, J.H. Yang, Bayanheshig. CrystEngComm 16, 6896 (2014)Google Scholar
  31. 31.
    N.K. DivyaP, P. Pradyumnan, J. Mater. Sci.: Mater. Electron. 28, 2147 (2017)Google Scholar
  32. 32.
    F. Abrinaei, M. Shirazi, J. Mater. Sci.: Mater. Electron. 28, 17541 (2007)Google Scholar
  33. 33.
    M. Gao, J.C. Yao, C. Yan, X.F. Li, T.J. Hu, L. Chen, Y.X. Wang, Y.J. Zhang, H.L. Liu, Y. Liu, L.H. Cao, Y.T. Cao, J.H. Yang, J. Alloys Compd. 734, 282 (2018)Google Scholar
  34. 34.
    H.M. Mostafa, M. Mahnaz, S.N. Ali, J. Electron. Mater. 45, 7 (2016)Google Scholar
  35. 35.
    D.D. Wang, Q. Chen, G.Z. Xing, J.B. Yi, S.R. Bakaul, J. Ding, J.L. Wang, T. Wu, Nano Lett. 12, 3994 (2012)Google Scholar
  36. 36.
    G. Tobias, W. Tobias, B. Uwe, B. Torsten, F. Christian, K. Heinz, M. Timo, Light-Sci. Appl. 2, 82 (2013)Google Scholar
  37. 37.
    P. Wang, Y.P. Wang, L.M. Tong, Light-Sci. Appl. 2, 102 (2013)Google Scholar
  38. 38.
    H.L. Liu, W.J. Li, J.H. Yang, M. Gao, X.Y. Liu, M.B. Wei, J. Mater. Sci.: Mater. Electron. 28, 2949 (2017)Google Scholar
  39. 39.
    S.V. Sergeyev, C.B. Mou, E.G. Turitsyna, A. Rozhin, S.K. Turitsyn, K. Blow, Light-Sci. Appl. 3, 131 (2014)Google Scholar
  40. 40.
    Y.Y. Zhang, Y. Chen, Q.W. Kou, Z. Wang, D.L. Han, Y.T. Sun, J.H. Yang, Y. Liu, L.L. Yang, J. Mater. Sci.: Mater. Electron. 29, 3665 (2018)Google Scholar
  41. 41.
    M. Gao, G.Z. Xing, J.H. Yang, L.L. Yang, Y.J. Zhang, H.L. Liu, H.G. Fan, Y.S. Sui, B. Feng, Y.F. Sun, Z.Q. Zhang, H. Son, Microchim. Acta 179, 315 (2012)Google Scholar
  42. 42.
    X.Y. Zhang, D.L. Han, N. Ma, R.X. Gao, A.N. Zhu, S. Guo, Y.J. Zhang, Y.X. Wang, J.H. Yang, L. Chen, J. Phys. Chem. Lett. 9, 6047 (2018)Google Scholar
  43. 43.
    J. Yang, J. Du, J. Cao, M. Wei, H. Niu, L. Yang, X. Liu, M. Gao, J. Mater. Sci.: Mater. Electron. 29, 876 (2018)Google Scholar
  44. 44.
    L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, J. Phys. Chem. C 112, 20095 (2008)Google Scholar
  45. 45.
    H. Znad, M.H. Ang, M.O. Tade, Int. J. Photoenergy 2012, 548158 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.National Demonstration Centre for Experimental Physics EducationJilin Normal UniversitySipingPeople’s Republic of China
  4. 4.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchunPeople’s Republic of China
  5. 5.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, and National Demonstration Centre for Experimental Physics EducationJilin Normal UniversitySipingPeople’s Republic of China

Personalised recommendations