Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20515–20524 | Cite as

In situ synthesis of core–shell nanocomposites based on polyaniline/Ni–Zn ferrite and enhanced microwave absorbing properties

  • Quanfang Li
  • Xiangyuan Wang
  • Zilong Zhang
  • Suli Chen
  • Shuoyun Wei
  • Xue Gong
  • Liying Ma
  • Hongbing Yao
  • Xueyan DuEmail author
Article

Abstract

Core–shell nanocomposites based on polyaniline/Ni–Zn ferrite (PANI-NZFO) were successfully fabricated by a method of in situ oxidative polymerization, and the aggregation of Ni–Zn ferrite (NZFO) nanospheres can be controlled through adjusting the weight ratio of NZFO/aniline (NZFO/ANI). As a result, the sample with NZFO/ANI weight ratio of 3:100 exhibits the optimal reflection loss (RL) value of − 46.5 dB. Particularly, PANI-NZFO present excellent dielectric loss (0.18 < tanδe < 0.35) due to the coating of PANI. TEM images show the core–shell structure of PANI-NZFO and the dispersibility of NZFO is favorable. In order to avoid the NZFO nanospheres from being damaged by the acid, their surface was firstly grafted with amidogen (–NH2). Simultaneously, it is clear that the NZFO nanospheres haven’t been destroyed during the process of coating, which has been confirmed by XRD patterns, and a formation mechanism was designed. FTIR spectra indicate that the coating observed in TEM images is exactly polyaniline (PANI). The effects of NZFO/ANI weight ratio (or conductivity), volume fraction (of PANI-NZFO/paraffin containing PANI-NZFO) and layer thickness on microwave absorbing properties were investigated at room temperature in the frequency range of 0–18 GHz.

Notes

Acknowledgements

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (Grant Nos. 51363015; 51501042), and thank the measurements supports from the Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education (Lanzhou University).

References

  1. 1.
    P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, J. Phys. Chem. C 116, 13403 (2012)Google Scholar
  2. 2.
    A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandrad, S.K. Dhawan, J. Mater. Chem. A 2, 3581 (2014)Google Scholar
  3. 3.
    D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.-G. Ren, J.-H. Wang, Z.-M. Li, Adv. Funct. Mater. 25, 559 (2015)Google Scholar
  4. 4.
    X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, Y. Du, Nanoscale 7, 12932 (2015)Google Scholar
  5. 5.
    X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4, 6816 (2016)Google Scholar
  6. 6.
    J. Abraham, P. Mohammed Arif, P. Xavier, S. Bose, S.C. George, N. Kalarikkal, S. Thomas, Polymer 112, 102 (2017)Google Scholar
  7. 7.
    M.A. Poothanari, J. Abraham, N. Kalarikkal, S. Thomas, Ind. Eng. Chem. Res. 57, 4287 (2018)Google Scholar
  8. 8.
    I. Arief, S. Biswas, S. Bose, Nano Struct. Nano Objects 11, 94 (2017)Google Scholar
  9. 9.
    X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, J. Mater. Chem. A 3, 5535 (2015)Google Scholar
  10. 10.
    X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101 (2016)Google Scholar
  11. 11.
    Q. Zeng, X. Xiong, P. Chen, Q. Yu, Q. Wang, R. Wang, H. Chu, J. Mater. Chem. C 4, 10518 (2016)Google Scholar
  12. 12.
    H. Zhang, X. Zhong, J.-J. Xu, H.-Y. Chen, Langmuir 24, 13748 (2008)Google Scholar
  13. 13.
    W. Zhou, X. Hu, X. Bai, S. Zhou, C. Sun, J. Yan, P. Chen, ACS Appl. Mater. Interfaces 3, 3839 (2011)Google Scholar
  14. 14.
    M. Qiao, X. Lei, Y. Ma, L. Tian, K.H. Su, Q. Zhang, Ind. Eng. Chem. Res. 55, 6263 (2016)Google Scholar
  15. 15.
    Q. Li, Y. Li, X. Li, S. Chen, S. Zhang, J. Wang, C. Hou, J. Alloys Compd. 608, 35 (2014)Google Scholar
  16. 16.
    A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, ACS Appl. Mater. Interfaces 2, 927 (2010)Google Scholar
  17. 17.
    U. Riaz, S.M. Ashraf, R. Raza, K. Kohli, J. Kashyap, Ind. Eng. Chem. Res. 55, 6300 (2016)Google Scholar
  18. 18.
    L. Li, H. Liu, Y. Wang, J. Jiang, F. Xu, J. Colloid Interface Sci. 321, 265 (2008)Google Scholar
  19. 19.
    J. Fei, Y. Cui, X. Yan, Y. Yang, K. Wang, J. Li, ACS Nano 3, 3714 (2009)Google Scholar
  20. 20.
    Y. Zuo, Z. Yao, J. Zhou, X. Zhang, Y. Ning, J. Mater. Sci.: Mater. Electron. 29, 922 (2018)Google Scholar
  21. 21.
    K. Manna, S.K. Srivastava, ACS Sustainable Chem. Eng. 5, 10710 (2017)Google Scholar
  22. 22.
    P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, J. Mater. Chem. 22, 17485 (2012)Google Scholar
  23. 23.
    M.A. Dar, R.K. Kotnala, V. Verma, J. Shah, W.A. Siddiqui, M. Alam, J. Phys. Chem. C 116, 5277 (2012)Google Scholar
  24. 24.
    L. Du, Y. Du, Y. Li, J. Wang, C. Wang, X. Wang, P. Xu, X. Han, J. Phys. Chem. C 114, 19600 (2010)Google Scholar
  25. 25.
    N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, J. Am. Chem. Soc. 129, 12374 (2007)Google Scholar
  26. 26.
    N. Bao, L. Shen, Y.-H. Wang, J. Ma, D. Mazumdar, A. Gupta, J. Am. Chem. Soc. 131, 12900 (2009)Google Scholar
  27. 27.
    C.R. Vestal, Z.J. Zhang, Nnao Lett. 3, 1739 (2003)Google Scholar
  28. 28.
    J. Hao, W. Yang, Z. Zhang, S. Pan, B. Lu, X. Ke, B. Zhang, J. Tang, Nanoscale 5, 3078 (2013)Google Scholar
  29. 29.
    K. Kirchberg, A. Becker, A. Bloesser, T. Weller, J. Timm, C. Suchomski, R. Marschall, J. Phys. Chem. C 121, 27126 (2017)Google Scholar
  30. 30.
    S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.K. Kotnala, J. Phys. Chem. C 114, 6272 (2010)Google Scholar
  31. 31.
    D.-H. Nam, M.-J. Kim, S.-J., I.-S. Song, H.-S. Kwon, J. Mater. Chem. A 1, 8061 (2013)Google Scholar
  32. 32.
    J. Zang, X. Li, J. Mater. Chem. 21, 10965 (2011)Google Scholar
  33. 33.
    D.A. Gopakumar, A.R. Pai, Y.B. Pottathara, D. Pasquini, L. Carlos de Morais, M. Luke, N. Kalarikkal, Y. Grohens, S. Thomas, ACS Appl. Mater. Interfaces 10, 20032 (2018)Google Scholar
  34. 34.
    P. Liu, L. Li, Z. Yao, J. Zhou, M. Du, T. Yao, J. Mater. Sci.: Mater. Electron. 27, 7776 (2016)Google Scholar
  35. 35.
    C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, ACS Appl. Mater. Interfaces 7, 20090 (2015)Google Scholar
  36. 36.
    J.M. Velazquez, A.V. Gaikwad, T.K. Rout, J. Rzayev, S. Banerjee, ACS Appl. Mater. Interfaces 3, 1238 (2011)Google Scholar
  37. 37.
    R.V. Lakshmi, P. Bera, R.P.S. Chakradhar, B. Choudhury, S.P. Pawar, S. Bose, R.U. Nair, H.C. Barshilia, Phys. Chem. Chem. Phys. 21, 5068 (2019)Google Scholar
  38. 38.
    F. Hong, C. Yan, Y. Si, J. He, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 7, 20200 (2015)Google Scholar
  39. 39.
    Q.-F. Li, X. Du, S. Chen, S. Zhang, J. Mater. Sci.: Mater. Electron. 29, 3286 (2018)Google Scholar
  40. 40.
    L. Guo, G.-L. Pei, T.-J. Wang, Z.-W. Wang, Y. Jin, Colloid. Surf. A 293, 58 (2007)Google Scholar
  41. 41.
    X. Lu, H. Mao, W. Zhang, Polym. Compos. 30, 847 (2009)Google Scholar
  42. 42.
    Q. Yang, K. Tang, C. Wang, Y. Qian, S. Zhang, J. Phys. Chem. B 106, 9227 (2002)Google Scholar
  43. 43.
    N. Li, G.-W. Huang, Y. Li, H.-M. Xiao, Q.-P. Feng, N. Hu, S.-Y. Fu, ACS Appl. Mater. Interfaces 9, 2973 (2017)Google Scholar
  44. 44.
    B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8, 28917 (2016)Google Scholar
  45. 45.
    X. Wang, H. Yan, R. Xue, S. Qi, J. Mater. Sci.: Mater. Electron. 28, 519 (2017)Google Scholar
  46. 46.
    R. Rohini, S. Bose, Nano-Structures & Nano-Objects 12, 130 (2017)Google Scholar
  47. 47.
    C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, T. Zhang, J. Phys. Chem. C 114, 3196 (2010)Google Scholar
  48. 48.
    R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401 (2004)Google Scholar
  49. 49.
    P. Xu, X. Han, C. Wang, H. Zhao, J. Wang, X. Wang, B. Zhang, J. Phys. Chem. B 112, 2775 (2008)Google Scholar
  50. 50.
    Y. Lin, J. Wang, H. Yang, L. Wang, J. Mater. Sci.: Mater. Electron. 28, 17968 (2017)Google Scholar
  51. 51.
    J. Zhu, M. Ye, A. Han, J. Mater. Sci.: Mater. Electron. 28, 13350 (2017)Google Scholar
  52. 52.
    Y. Ma, Y. Zhou, Z. Xiong, Y. Sun, C. Qi, Y. Zhang, Y. Liu, J. Mater. Sci.: Mater. Electron. 30, 4819 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Evidence Science of Gansu ProvinceGansu University of Political Science and LawLanzhouChina
  2. 2.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of EducationInstitute of Polymer, Northwest Normal UniversityLanzhouChina
  3. 3.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Key Laboratory of Nonferrous Metal Alloys and ProcessingMinistry of Education, School of Materials Science & Engineering, Lanzhou University of TechnologyLanzhouChina
  4. 4.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations