Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 20914–20934 | Cite as

Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles

  • Ruqiya Bhat
  • Mubashir Qayoom
  • Ghulam Nabi DarEmail author
  • Basharat Want


This work demonstrates the synthesis of erbium (Er3+) ion doped ⍺-Fe2O3 nanoparticles through sol–gel method. The synthesized nanoparticles were thoroughly characterized by various analytical techniques such as XRD, FESEM and EDS, which confirmed that the prepared nanoparticles belong to hexagonal crystal structure with R-3c space group and are well crystalline and highly dense. The as synthesized nanoparticles were studied for dielectric, conductivity and magnetic properties. From dielectric studies, an increase in dielectric constant was observed with the increase in temperature and decrease in frequency. With Er3+ ion doping, a considerable increase in dielectric constant was observed for all doping concentrations. The temperature dependent dc conductivity follows Motts law thereby confirming variable range hopping mechanism in these systems. The room temperature magnetization was observed to increase significantly by incorporating Er3+ ions into ⍺-Fe2O3 lattice. In addition, an exciting result of this study was that the Er3+ ion doped ⍺-Fe2O3 nanoparticles saturate at low applied field of around 10 kOe compared to pure ⍺-Fe2O3 system which does not saturate up to the maximum applied field of 20 kOe. Attaining high saturation magnetization at low applied magnetic field in Er3+ ion doped ⍺-Fe2O3 system could provide a novel platform for medical applications.



R. Bhat thanks UGC, Govt. of India, for Mualana Azad National Fellowship (MANF) vide reference number F1-17.1/2015-16/MANF-2015-17-JAM-49627. Corresponding author G. N. Dar acknowledges DST, Govt. of India, for financial support vide reference number DST/TM/WTI/2K16/248 (G).


  1. 1.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)Google Scholar
  2. 2.
    W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134, 14658–14661 (2012)Google Scholar
  3. 3.
    F.S. DeJesus, A.M.B. Miro, C.A.C. Escobedo, R. Valenzuela, S. Ammar, Mechanosynthesis, crystal structure and magnetic characterization of M-type SrFe12O19. Ceram. Int. I40, 4033–4038 (2014)Google Scholar
  4. 4.
    A.S. Kupieca, J. Venkate, A. AlHathal, D. Walczyka, A. Farooqi, D. Malina, S.H. Hosseini, B. Tyliszczak, Magnetic nanomaterials and sensors for biological detection. Nanomedicine 12, 2459–2473 (2016)Google Scholar
  5. 5.
    T. Guo, M. Lin, J. Huang, C. Zhou, W. Tian, H. Yu, X. Jiang, J. Ye, Y. Shi, Y. Xiao, X. Bian, X. Feng, The recent advances of magnetic nanoparticles in medicine. J. Nanomater. (2018). CrossRefGoogle Scholar
  6. 6.
    A.H. Valdes, R.A. Zarate, A.I. Martinez, M.I.P. Canul, M.A.G. Lobato, R. Villaroel, The role of solvents on the physical properties of sprayed iron oxide films. Vacuum 105, 26–32 (2014)Google Scholar
  7. 7.
    S. Wagloehner, J.N. Baer, S. Kureti, Structure activity relation of iron oxide catalysts in soot oxidation. Appl. Catal. B 147, 1000–1008 (2014)Google Scholar
  8. 8.
    A.S. Teja, P.Y. Koh, Synthesis, properties and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)Google Scholar
  9. 9.
    A. Umar, Y.B. Hahn, Metal Oxide Nanostructures and Their Applications (American Scientific Publishers, Valencia, 2010)Google Scholar
  10. 10.
    M. Abaker, A. Umar, S. Baskoutas, G.N. Dar, S.A. Zaidi, S.A. Al-Sayari, A. Al- Hajry, S.H. Kim, S.W. Hwang, A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J. Phys. D 44, 425401–425407 (2011)Google Scholar
  11. 11.
    H. Liang, W. Chen, Y. Yao, Z. Wang, Y. Yang, Hydrothermal synthesis, self-assembly and electrochemical performance of ⍺-Fe2O3 microspheres for lithium ion batteries. Ceram. Int. 40, 10283–10290 (2014)Google Scholar
  12. 12.
    M. Tadic, M. Panjan, V. Damnjanovi, I. Milosevic, Magnetic properties of hematite (⍺-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 320, 183–187 (2014)Google Scholar
  13. 13.
    M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties. J. Magn. Magn. Mater. 321, 12–16 (2009)Google Scholar
  14. 14.
    M. Tadic, N. Citakovic, M. Panjan, Z. Stojanovic, D. Markovic, V. Spasojevic, Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. J. Alloys Compd. 509, 7639–7644 (2011)Google Scholar
  15. 15.
    M. Sorescu, R.A. Brand, D.M. Tarabasanu, L. Diamandescu, The crucial role of particle morphology in the magnetic properties of hematite. J. Appl. Phys. 85, 5546–5548 (1999)Google Scholar
  16. 16.
    F. Bodker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Morup, Magnetic properties of hematite nanoparticles. Phys. Rev. B. 61, 6826–6839 (2000)Google Scholar
  17. 17.
    M.F. Hansen, C.B. Koch, S. Morup, Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. Phys. Rev. B. 62, 1124–1136 (2000)Google Scholar
  18. 18.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)Google Scholar
  19. 19.
    J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. 111, 16477–16488 (2007)Google Scholar
  20. 20.
    G. Goyala, A. Dograb, S. Rayaprol, S.D. Kaushik, V. Siruguri, H. Kishan, Structural and magnetization studies on nanoparticles of Nd doped α-Fe2O3 nanoparticles. Mater. Chem. Phys. 134, 133–138 (2012)Google Scholar
  21. 21.
    F.S. Freyria, G. Barrera, P. Tiberto, E. Belluso, D. Levy, G. Saracco, P. Allia, E. Garrone, B. Bonelli, Eu doped α-Fe2O3 nanoparticles with modified magnetic properties. J. Solid State Chem. 201, 302–311 (2013)Google Scholar
  22. 22.
    R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J. Environ. Chem. Eng. 2, 1956–1968 (2014)Google Scholar
  23. 23.
    J.S. Justus, S.D.D. Roy, A.M.E. Raj, Influence of lanthanum doping on the structural and optical properties of hematite nanopowders. JASEM 2, 272–277 (2016)Google Scholar
  24. 24.
    L.E. Mathevula, L.L. Noto, B.K. Mothudi, M.S. Dhlamini, Structural and optical properties of α-Fe2O3 nanoparticles influence by holmium ions. Physica B (2017). CrossRefGoogle Scholar
  25. 25.
    R. Bhat, B. Want, A. Firdous, G.N. Dar, Probing of electric and magnetic properties of holmium doped iron oxide nanoparticles. J. Mater. Sci.: Mater. Electron. (2018). CrossRefGoogle Scholar
  26. 26.
    R. Bazzi, M.A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, P. Perriat, Synthesis and luminescent properties of sub-5-nm lanthanide oxide nanoparticles. J. Lumin. 102, 445–450 (2003)Google Scholar
  27. 27.
    E.V. Groman, J.C. Bouchard, C.P. Reinhardt, D.E. Vaccaro, Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconj Chem. 18, 1763–1771 (2007)Google Scholar
  28. 28.
    B. Issa, I.M. Obaidat, B.A. Albiss, Yousef Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)Google Scholar
  29. 29.
    K.G. Chandrappa, T.V. Venkatesha, Electrochemical bulk synthesis of Fe3O4 and α-Fe2O3 nanoparticles and its Zn-Co-α-Fe2O3 composite thin films for corrosion protection. Mater. Corros. 63, 1–13 (2012)Google Scholar
  30. 30.
    E.J. Mittemeijer, U. Welzel, The state of the art of the diffraction analysis of crystallite size and lattice strain. Z. fur Krist. 223, 552–560 (2008)Google Scholar
  31. 31.
    G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray debye-scherrer spectrum. Philos. Mag. 1, 34–46 (2006)Google Scholar
  32. 32.
    G.E. Manger, Porosity and Bulk Density of Sedimentary Rocks, Geological Survey Bulletin (G. E. Manger, Washington, 1963)Google Scholar
  33. 33.
    J.S. Justus, S.D.D. Roy, A.M.E. Raj, Synthesis and characterization of hematite nanopowders. Mater. Res. Express. 3, 105037–105045 (2016)Google Scholar
  34. 34.
    Y. Slimania, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621–2628 (2019)Google Scholar
  35. 35.
    S. Anand, V.M. Vinosel, M.A. Jenifer, S. Pauline, Dielectric properties, ac electrical conductivity and electric modulus of hematite (α-Fe2O3) nanoparticles. IRJET 4, 358–362 (2017)Google Scholar
  36. 36.
    S.S.N. Murthy, V.R.K. Murthy, J. Sobhanadri, Anomalous dielectric behavior of some ferrites. J. Appl. Phys. 65, 2159–2161 (1989)Google Scholar
  37. 37.
    V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, K.Y. Rajpure, Effect of calcining temperature on electrical and dielectric properties of cadmium stannate. Appl. Surf. Sci. 255, 6675–6678 (2009)Google Scholar
  38. 38.
    P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, I.S. Mulla, K.M. Jadhav, B.K. Chougule, Magnetic and dielectric properties of nanophase manganese substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270–3273 (2009)Google Scholar
  39. 39.
    K.R. Krishna, D. Ravinder, K.V. Kumar, U.S. Joshi, V.A. Rana, A. Lincon, Dielectric properties of Ni-Zn ferrites synthesized by citrate gel method. WJCMP 2, 57–60 (2012)Google Scholar
  40. 40.
    K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Impedance spectroscopic characterization of Sm and Ho doped Ni ferrites. J. Electrochem. Soc. 158, 71–78 (2011)Google Scholar
  41. 41.
    R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2011)Google Scholar
  42. 42.
    H. Zheng, W. Weng, G. Han, P. Du, Colossal permittivity and variable range hopping conduction of polarons in Ni0.5Zn0.5Fe2O4 ceramic. J. Phys. Chem. C 117, 12966–12972 (2013)Google Scholar
  43. 43.
    N.F. Mott, R.W. Gumey, Electronic Process in Ionic Crystals (Oxford Univ. Press, Oxford, 1948)Google Scholar
  44. 44.
    I. Ahmad, M.T. Farid, Characterization of cobalt based spinel ferrites with small substitution of gadolinium. WASJ 19, 464–469 (2012)Google Scholar
  45. 45.
    M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Ishfaq, Structural, electrical and dielectric behavior of NixCo1-xNdyFe2-yO4 nano ferrites synthesized by sol-gel method. Dig. J. Nanomater. Biostruct. 10, 265–275 (2015)Google Scholar
  46. 46.
    N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi A 23, 575–582 (1974)Google Scholar
  47. 47.
    T. Ivetic, M.V. Nikolic, M. Slankamenac, M. Zivanov, D. Minic, P.M. Nikolic, M.M. Ristic, Influence of Bi2O3 on microstructure and electrical properties of ZnO-SnO2 ceramics. Sci. Sinter. 39, 229–240 (2007)Google Scholar
  48. 48.
    A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J. Alloys. Compd. 509, 2909–2913 (2011)Google Scholar
  49. 49.
    M.V. Nikolic, M.P. Slankamenac, N. Nikolic, D.L. Sekulic, O.S. Aleksic, M. Mitric, T. Ivetic, V.B. Pavlovic, P.M. Nikolic, Study of dielectric behavior and electrical properties of hematite α-Fe2O3 doped with Zn. Sci. Sinter. 44, 307–321 (2012)Google Scholar
  50. 50.
    X.M. Liu, S.Y. Fu, H.M. Xiao, C.J. Huang, Preparation and characterization of shuttle like α-Fe2O3 nanoparticles by supermolecular template. J. Solid State Chem. 178, 2798–2803 (2005)Google Scholar
  51. 51.
    B.J. Daniels, B.M. Clemens, Effect of Cr doping on the Magnetoresistance and saturation field of epitaxial Fe1-xCrx(001)/Cr(001) multilayer. Appl. Phys. Lett. 66, 520–524 (1995)Google Scholar
  52. 52.
    P. Li, W.Y. Cui, H.L. Bai, An approach to reduce the antiferromagnetic coupling of antiphase boundaries in half metallic magnetite films. J. Appl. Phys. 114, 213902–213908 (2013)Google Scholar
  53. 53.
    N. Preksha, N. Dhruv, S. Solanki, R.B. Kulkarni, Effect of sintering temperature and vinca petals extract on structural and magnetic properties of delafossite CuFeO2. AIP Conf. Proc. 1728, 020074-4 (2016)Google Scholar
  54. 54.
    R. Grossinger, A critical examination of the law of approach to saturation. Phys. Status Solidi A 66, 665–674 (1981)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Nanophysics Research LaboratoryUniversity of KashmirSrinagarIndia
  2. 2.Department of Physics, Solid State Research LaboratoryUniversity of KashmirSrinagarIndia

Personalised recommendations