Humic acid assisted chemical synthesis of silver nanoparticles for inkjet printing of flexible circuits

  • Yueyue Hao
  • Zesheng Xu
  • Jian Gao
  • Kaiyun Wu
  • Jingyu Liu
  • Jing LuoEmail author


In this paper, humic acid (HA) was used as stabilizer to prepare silver nanoparticles (Ag NPs) by chemically reducing silver salts in water phase, which were employed to produce Ag NPs inks for inkjet printing conductive silver patterns. The obtained silver nanoparticles stabilized with HA (HA-Ag NPs) were all in spherical shape and the particle size was about 7–12 nm. By re-dispersing HA-Ag NPs in ultrapure water, conductive ink with excellent storage stability was prepared, which can be placed at room temperature for 30 days without any precipitation. The as-prepared HA-Ag NPs conductive ink was printed onto photopapers to fabricate conductive silver patterns with a domestic inkjet printer. The resistivity of the printed pattern could reach 135 μΩ cm after printed for 40 layers and sintered at 180 °C for 60 min. In addition, the printed conductive silver patterns could be integrated into a LED device or alarm apparatus, indicating it could be widely used in flexible printing electronics.



We acknowledge financial support from the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-19), MOE & SAFEA for the 111 Project (B13025) for financial support.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10854_2019_2372_MOESM1_ESM.pdf (697 kb)
Supplementary material 1 (PDF 696 kb)


  1. 1.
    K. Woo, D. Kim, J.S. Kim et al., Inkjet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25(1), 429–433 (2009)CrossRefGoogle Scholar
  2. 2.
    W. Wu, Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 20(1), 187–224 (2019)CrossRefGoogle Scholar
  3. 3.
    A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005)CrossRefGoogle Scholar
  4. 4.
    N.C. Raut, K. Al-Shamery, Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6(7), 1618–1641 (2018)CrossRefGoogle Scholar
  5. 5.
    W. Wu, Inorganic nanomaterials for printed electronics: a review. Nanoscale 9(22), 7342–7372 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Zhu, M. Wu, Highly conductive nano-silver circuits by inkjet printing. J. Electron. Mater. 47(9), 5133–5147 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Tannic acid stabilized antioxidation copper nanoparticles in aqueous solution for application in conductive ink. J. Mater. Sci. 29(24), 20603–20606 (2018)Google Scholar
  8. 8.
    P.S. Karthik, S. Singh, P, Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5(95), 77760–77790 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Jaakkola, H. Sandberg, M. Lahti, V. Ermolov, Near-Field UHF RFID transponder with a screen-printed graphene antenna. IEEE Trans. Comput. Pack. Manuf. 9(4), 616–623 (2019)Google Scholar
  10. 10.
    W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Milardovic, I. Ivanisevic, A. Rogina, P. Kassal, Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing. Int. J. Electrochem. Sci. 13(11), 11136–11149 (2018)CrossRefGoogle Scholar
  12. 12.
    S.A. Patil, C.H. Ryu, H.S. Kim, Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. Int. J. Precis. Eng. Manuf. 5(2), 239–245 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Hao, J. Gao, Z. Xu et al., Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J. Chem. 43(6), 2797–2803 (2019)CrossRefGoogle Scholar
  16. 16.
    M. Wagner, C.D. O’Connell, D.G. Harman et al., Synthesis and optimization of PEDOT:PSS based ink for printing nanoarrays using dip-pen nanolithography. Synth. Met. 181, 64–71 (2013)CrossRefGoogle Scholar
  17. 17.
    G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO2, NH3m EtOH and acetone. RSC Adv. 4(93), 51395–51403 (2014)CrossRefGoogle Scholar
  18. 18.
    N.J. Zhang, R. Luo, X.Y. Liu, Liu, Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics. RSC Adv. 6(87), 83720–83729 (2016)CrossRefGoogle Scholar
  19. 19.
    Q.F. Chen, G.H. Liu, G.X. Chen et al., Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources 12(1), 608–621 (2017)Google Scholar
  20. 20.
    M.C. Dang, T.M.D. Dang, E. Fribourg-Blanc, Silver nanoparticles ink synthesis for conductive patterns fabrication using inkjet printing technology. Adv. Nat. Sci. 6(1), 015003–015010 (2015)Google Scholar
  21. 21.
    Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid et al., Preparation and characterization of silver nanoparticles by chemical reduction method. Colloid Surf. B 82(2), 513–517 (2011)CrossRefGoogle Scholar
  22. 22.
    M.F. Zhang, A.W.B. Zhao, H.H. Sun et al., Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates. J. Mater. Chem. 21(46), 18817–18824 (2011)CrossRefGoogle Scholar
  23. 23.
    Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Green synthesis of silver nanoparticles by tannic acid with improved catalytic performance towards the reduction of methylene blue. NANO 13(01), 1850003–1850010 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Ding, J. Liu, Q. Tian et al., Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res. Lett. 11(1), 412–419 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4(19), 19–36 (2011)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, X.W. Liang, T. Zhao et al., Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J. Mater. Sci. 28(22), 16939–16947 (2017)Google Scholar
  27. 27.
    X.Q. Zhou, W. Li, M.L. Wu et al., Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)CrossRefGoogle Scholar
  28. 28.
    T.H. Chiang, K.D. Wu, T.E. Hsieh, Preparation of silver nanoparticles by using tripropylene glycol as the reducing agents of polyol process. IEEE Trans. Nanotechnol. 13(1), 116–122 (2014)CrossRefGoogle Scholar
  29. 29.
    E.K. Elumalai, K. Kayalvizhi, S. Silvan, Coconut water assisted green synthesis of silver nanoparticles. J. Pharm. Bioallied Sci. 6(4), 241–245 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Bastos-Arrieta, A. Florido, C. Perez-Rafols et al., Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 8(11), 946–959 (2018)CrossRefGoogle Scholar
  31. 31.
    J.M. Jacob, M.S. John et al., Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using ocimum sanctum leaf extract. Mater. Res. Express 6(4), 352–360 (2019)CrossRefGoogle Scholar
  32. 32.
    S.T. Dubas, V. Pimpan, Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater. Lett. 62(17–18), 2661–2663 (2008)CrossRefGoogle Scholar
  33. 33.
    I.L. Gunsolus, M.P.S. Mousavi et al., Effects of humic and fulvic acids on silver nanoparticle stability, dssolution, and toxicity. Environ. Sci. Technol. 49(13), 8078–8086 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Liu, R.G. Jordan, S.L. Qiu, Electronic-structures of ordered Ag–Mg alloys. Phys. Rev. B 49(7), 4478–4484 (1994)CrossRefGoogle Scholar
  35. 35.
    N.P. Bellafont, F. Vines, F. Illas, Performance of the TPSS functional on predicting core level binding energies of main group elements containing molecules: a good choice for molecules adsorbed on metal surfaces. J. Chem. Theory Comput. 12(1), 324–331 (2016)CrossRefGoogle Scholar
  36. 36.
    J.M. Bingham, J.N. Anker, L.E. Kreno, R.P. Van Duyne, Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132(49), 17358–17359 (2010)CrossRefGoogle Scholar
  37. 37.
    J. Sharma, N.K. Chaki, A.B. Mandale et al., Controlled interlinking of Au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. J. Colloid Interface Sci. 272(1), 145–152 (2004)CrossRefGoogle Scholar
  38. 38.
    V.K. Kaushik, Xps core level spectra and auger parameters for some silver compounds. J. Electron. Spectrosc. 56(3), 273–277 (1991)CrossRefGoogle Scholar
  39. 39.
    G. Zhang, H.Y. Gao, X.C. Tian et al., The performance study of OLED based on Cs2O doped Ag2O thin layer structure as the electronic injection layer. Mod. Phys. Lett. B 29(17), 1550080 (2015)CrossRefGoogle Scholar
  40. 40.
    J.J. Alberts, Z. Filip, Metal binding in estuarine humic and fulvic acids: FTIR analysis of humic acid-metal complexes. Environ. Technol. 19(9), 923–931 (1998)CrossRefGoogle Scholar
  41. 41.
    K.S. Moon, H. Dong, R. Maric et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34(2), 168–175 (2005)CrossRefGoogle Scholar
  42. 42.
    F. Zhang, Y.W. Li et al., Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures. J. Mater. Chem. C 6, 3999–4006 (2018)CrossRefGoogle Scholar
  43. 43.
    T.T. Nge, M. Nogi, K. Suganuma, Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J. Mater. Chem. C 1, 5235–5243 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yueyue Hao
    • 1
  • Zesheng Xu
    • 1
  • Jian Gao
    • 1
  • Kaiyun Wu
    • 1
  • Jingyu Liu
    • 1
  • Jing Luo
    • 1
    Email author
  1. 1.The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations