Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20393–20399 | Cite as

Study on the structure and luminescence quenching of Pr doped Na0.5Bi4.5Ti4O15 multifunctional ceramics

  • Meng ChenEmail author


In this work, Pr doped Na0.5Bi4.5Ti4O15 ceramics are prepared via conventional solid reaction method. We particularly here report that the emission spectra under 451 nm excitation is dominated by green emission from 3P0,1 level over red emission from 1D2 level. The emission from 3P0,1 level is more subject to non-radiative relaxation than that from 1D2 level, however, the emission from 1D2 level is more strongly affected by concentration quenching than that from 3P0,1 level. Besides, oxygen vacancy-related luminescence quenching is also observed.



This work is financially supported by Science and Technology Research Project of Jiangxi Provincial Department of Education (Project No: GJJ161283); Jingdezhen Science and Technology Plan Project (Grant No. 2017GYZD021-02).


  1. 1.
    H. Yang, Z. Dai, J. Li et al., Energy transfer and frequency upconversion in Pr3+-doped ZBLAN glass. J. Non-Cryst. Solids 352(52–54), 5469–5474 (2006)CrossRefGoogle Scholar
  2. 2.
    J.P. Zuniga, S.K. Gupta, M. Pokhrel et al., Exploring optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitations for potential lighting and scintillating applications. New J. Chem. 42(12), 9381–9392 (2018)CrossRefGoogle Scholar
  3. 3.
    V.M. Martins, G.A. Azevedo, A.A. Andrade et al., Spatial and temporal observation of energy transfer processes in Pr-doped phosphate glasses. Opt. Mater. 37, 387–390 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Boutinaud, E. Pinel, M. Oubaha et al., Making red emitting phosphors with Pr3+. Opt. Mater. 28(1), 9–13 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Inaguma, T. Muronoi, K. Sano et al., An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M = Nb, Ta):Pr3+. Inorg. Chem. 50(12), 5389–5395 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Peng, H. Sun, X. Wang et al., Red emission in Pr doped CaBi4Ti4O15 ferroelectric ceramics. Mater. Sci. Eng. B 176(18), 1513–1516 (2011)CrossRefGoogle Scholar
  7. 7.
    D. Peng, H. Sun, X. Wang et al., Blue excited photoluminescence of Pr doped CaBi2Ta2O9 based ferroelectrics. J. Alloys Compd. 511(1), 162 (2012)Google Scholar
  8. 8.
    L. Yu, J. Hao, Z. Xu et al., Strong red emission and enhanced ferroelectric properties in (Pr, Ce)-modified Na0.5Bi4.5Ti4O15 multifunctional ceramics. J. Mater. Sci.: Mater. Electron. 27(11), 12216–12221 (2016)Google Scholar
  9. 9.
    D. Peng, H. Zou, C.N. Xu et al., Photoluminescent and dielectric characterizations of Pr doped CaBi2Nb2O9 multifunctional ferroelectrics. Ferroelectrics 450(1), 113–120 (2013)CrossRefGoogle Scholar
  10. 10.
    Q. Zhang, H. Sun, X. Wang et al., Reversible luminescence modulation upon photochromic reactions in rare-earth doped ferroelectric oxides by in situ photoluminescence spectroscopy. ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015)CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, Y. Zhang, H. Sun et al., Tunable luminescence contrast of Na0.5Bi4.5Ti4O15:Re (Re = Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Zou, Y. Yao, J. Li et al., Photoluminescence, enhanced ferroelectric, and dielectric properties of Pr3+-doped SrBi2Nb2O9 multifunctional ceramics. Mater. Res. Bull. 69(1), 112–115 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Jiang, X. Jiang, C. Chen et al., Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. J. Am. Ceram. Soc. 99(4), 1332–1339 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Long, C. Qi, W. Yun et al., New layer-structured ferroelectric polycrystallines, Na0.5NdxBi4.5-xTi4O15: crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3(34), 8852–8864 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Ezhilvalavan, J.M. Xue, J. Wang, Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics. Mater. Chem. Phys. 75(1), 50–55 (2002)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, S.J. Limmer, T.P. Chou et al., Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. J. Mater. Sci. Lett. 21(12), 947–949 (2002)CrossRefGoogle Scholar
  17. 17.
    V.A. Isupov, Systematization of Aurivillius-type layered oxides. Inorg. Mater. 42(10), 1094–1098 (2006)CrossRefGoogle Scholar
  18. 18.
    Y. Luo, X. Jiang, C. Chao et al., Structural, electrical, and photoluminescence properties of Pr3+ doped Na0.25K0.25Bi2.5Nb2O9 bismuth layer-structure ceramics. J. Mater. Sci.: Mater. Electron. 28(10), 7517–7524 (2017)Google Scholar
  19. 19.
    G.C. Yong, J.H. Baik, J. Heo, Spectroscopic properties of Pr3+:1D2 → 1G4 transition in SiO2-based glasses. Chem. Phys. Lett. 406(4), 436–440 (2005)Google Scholar
  20. 20.
    L.D. Longo, M. Ferrari, E. Zanghellini et al., Optical spectroscopy of zinc borate glass activated by Pr3+ ions. J. Non-Cryst. Solids 231(1–2), 188 (1998)Google Scholar
  21. 21.
    H.T. Yi, T. Choi, S.G. Choi et al., Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 23(30), 3403–3407 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jingdezhen UniversityJingdezhenChina

Personalised recommendations