Advances in gas ionization sensors based on nanostructured materials: a review

  • Parsoua A. SohiEmail author
  • Mojtaba Kahrizi


In this review article collection of summary of research works related to gas ionization sensors based on nanostructured materials is attempted. Among physical gas sensors, gas ionization sensor is used to identify gases based on breakdown of ionized gases as each gas has a unique breakdown voltage. The sensor is generally, made of two parallel electrodes separated by a narrow gap. Nanostructures, usually metallic or semiconducting, in from of nanowires/nanorods are places between the two plates. These structures act as electric field amplifiers to enhance the electric field intensity to reduce the breakdown voltages of the gases. Numerous investigations revealed that type of materials and their physical properties play important roles in the sensor characteristics and their operations. Identifying materials to optimize the strength of electric field and generate large field enhancement is a crucial step towards this application. Carbon nanotubes were among the first candidates to utilize in these structures and in fact, they were used to prove the principle of the device. The very first developed sensor showed that using carbon nanotubes between the two parallel plates of the sensor reduces the required applied voltages to ionize gases up to one order of magnitude. Since 2003 many studies are done to improve the performance and physical properties like sensitivity, selectivity, durability and stability of the device by incorporating various materials in form of nanowires/nanorods inside the device structure. In this work, first the fundamental structure of gas ionization sensor and the theory of their operations like field emission, field ionization and quantum tunneling phenomena are presented. Then, related research works reported in the literature are summarized. This review article is partitioned based on the materials used in the structure of the device as they play the most effective role in their performances. It is started with studies on devices based on carbon nanotubes, and then those used metallic nanowires followed by works done using semiconductor nanostructure to develop the device. The review started from the oldest articles in each category carried on to the most recent published works. All essential parameters effecting the structures and operations of the reported devices including their pros and cons are discussed.



This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Gina Cody school of Engineering and Computer Science at Concordia University.


  1. 1.
    Z. Yunusa, M. Nizar Hamidon, M. Nizar Hamidon, A. Kaiser, Z. Awang, Z. Awang, Sens. Trans. 168, 61 (2014)Google Scholar
  2. 2.
    R. Tu, Quantum Mechanics’ Return to Local Realism, (Cambridge Scholars Publishing, 2018)Google Scholar
  3. 3.
    G. Korotcenkov, Handbook of Gas Sensor Materials, vol. I (Springer, Berlin, 2014)CrossRefGoogle Scholar
  4. 4.
    F. Sauli, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip 386, 2–31(1997)Google Scholar
  5. 5.
    D.B. Go, Ionization and Ion Transport, A Primer for the Study of Non-Equilibrium, Low-Temperature Gas Discharges and Plasmas (Morgan & Claypool Publishers, San Rafael, 2018)CrossRefGoogle Scholar
  6. 6.
    A.M. Howaston, An Introduction To Gas Discharges, 2nd edn. (Pergamon Press, Oxford, 1976)Google Scholar
  7. 7.
    D. Xiao, Gas Discharge and Gas Insulation (Springer, Heidelberg, 2016)CrossRefGoogle Scholar
  8. 8.
    G.F. Knoll, Radiation Detection and Measurments, 3rd edn. (Wiley, New Jersey, 1999)Google Scholar
  9. 9.
    J.S. Townsend, Electricity in Gases (Oxford University Press, New York, 1915)CrossRefGoogle Scholar
  10. 10.
    M.M. Pejovic, G.S. Ristic, J.P. Karamarkovic, J. Phys. D 35, 10 (2002)CrossRefGoogle Scholar
  11. 11.
    V. Lisovskiy, V. Koval, V. Yegorenkov, Phys. Lett. A 375, 19 (2011)CrossRefGoogle Scholar
  12. 12.
    K.T. Burm, Contrib. Plasma Phys. 47, 3 (2007)CrossRefGoogle Scholar
  13. 13.
    L.P. Babich, T.V. Loˇ, IEEE Trans. Plasma Sci. 44, 12 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, C. Poulain, Appl. Phys. Lett. 105(12), 123109 (2014)CrossRefGoogle Scholar
  15. 15.
    V.A. Lisovskii, S.D. Yakovin, Tech. Phys. 45(6), 727 (2000)CrossRefGoogle Scholar
  16. 16.
    W.S. Boyle, P. Kisliuk, Phys. Rev. 97, 2 (1955)CrossRefGoogle Scholar
  17. 17.
    G.T. Boyd, T. Rasing, J.R.R. Leite, Y.R. Shen, Phys. Rev. B 30, 2 (1984)CrossRefGoogle Scholar
  18. 18.
    H.C. Miller, J. Appl. Phys. 38, 11 (1967)CrossRefGoogle Scholar
  19. 19.
    R.G. Forbes, C.J. Edgcombe, U. Valdrè, Ultramicroscopy 95, 57 (2003)CrossRefGoogle Scholar
  20. 20.
    N. Chivu, M. Kahrizi, IEEE Int. Conf. Ind. Technol. (2012). CrossRefGoogle Scholar
  21. 21.
    P. Abedini Sohi, M. Kahrizi, Nanostructures, (IntechOpen, 2019), pp. 1–16Google Scholar
  22. 22.
    F.A. Padovani, R. Stratton, Solid State Electron. 9, 7 (1966)CrossRefGoogle Scholar
  23. 23.
    E.L. Murphy, R.H. Good, Phys. Rev. 102, 6 (1956)CrossRefGoogle Scholar
  24. 24.
    W. P. Dyke, W. W. Dolan, Adv. Electron. Electron Phys, 8 (1956)Google Scholar
  25. 25.
    A. Knapek, “Methods of preparation and characterisation of experimental Field-Emission,” BRNO university of technology, 2016Google Scholar
  26. 26.
    J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys. 45, 3 (1973)CrossRefGoogle Scholar
  27. 27.
    R.H. Fowler, L. Nordheim, R. Soc. 119, 781 (1928)Google Scholar
  28. 28.
    J.T.W. Yeow, Y. Wang, J. Sens. (2009). CrossRefGoogle Scholar
  29. 29.
    D. L. Yang, L. Hyeon-Jae, C. Woo-Sung, Y. Lee, J.K Kim, S. Nahm, B.Ju, IVNC IFES 2006 - Tech. Dig. - l9th Int. Vac. Nanoelectron. Conf. 50th Int. F. Emiss. Symp., 433 (2006)Google Scholar
  30. 30.
    Y. Saito, S. Uemura, Carbon N. Y. 38, 2 (2000)CrossRefGoogle Scholar
  31. 31.
    R.B. Sadeghian, M. Kahrizi, Sens. Actuators, A 137, 2 (2007)CrossRefGoogle Scholar
  32. 32.
    N. Azmoodeh, N. Chivu, R. B. Sadeghian, M. Kahrizi, Sensors, EUROCON, 1, (2009)Google Scholar
  33. 33.
    H. Karaagac, M.S. Islam, Adv. Funct. Mater. 24, 15 (2014)CrossRefGoogle Scholar
  34. 34.
    R.B. Sadeghian, M.S. Islam, Nat. Mater. 10, 252 (2011)CrossRefGoogle Scholar
  35. 35.
    P. A. Sohi, “Self-Standing Silicon Nanostructures Fabricated Using Chemical/Electrochemical Technique: Application in Gas Field Ionization Tunneling Sensor,” Concordia University, 2019Google Scholar
  36. 36.
    S. Iijima, Lett. Nat. 354, 56 (1991)CrossRefGoogle Scholar
  37. 37.
    I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Mod. Electron. Mater. 2, 4 (2017)Google Scholar
  38. 38.
    J. Chung, K. Lee, J. Lee, Nanotechnology 15, 11 (2004)CrossRefGoogle Scholar
  39. 39.
    W. Wongwiriyapan, S. Honda, H. Konishi, T. Mizuta, T. Ikuno, T. Ito, T. Maekawa, K. Suzuki, H. Ishikawa, K. Oura, M. Katayama, Jpn. J. Appl. Phys. 44, 16–19 (2005)Google Scholar
  40. 40.
    A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Nature 424, 171 (2003)CrossRefGoogle Scholar
  41. 41.
    B. Yan, K. Qian, Y. Zhang, D. Xu, Phys. E 28, 1 (2005)CrossRefGoogle Scholar
  42. 42.
    M.J. Madou, Fundamentals of Microfacrication and Nanotechnology, Manufacturing Techniques, vol. 3 (CRC Press, New York, 2012)Google Scholar
  43. 43.
    G. Hui, L. Wu, M. Pan, Y. Chen, T. Li, X. Zhang, Meas. Sci. Technol. 17, 10 (2006)CrossRefGoogle Scholar
  44. 44.
    S. Jeong, O. Lee, K. Lee, S.H. Oh, C.G. Park, Chem. Mater. 14(4), 1859 (2002)CrossRefGoogle Scholar
  45. 45.
    Z. Hou et al., A MEMS-based ionization gas sensor using carbon nanotubes. IEEE Trans. Electron Devices 54(6), 1545–1548 (2007)CrossRefGoogle Scholar
  46. 46.
    Z. Hou, J. Wu, W. Zhou, X. Wei, D. Xu, Y. Zhang, B. Cai, IEEE Trans. Electron Devices 127, 6 (2007)Google Scholar
  47. 47.
    I.-M. Choi, S. Woo, Appl. Phys. Lett. 87, 7 (2005)Google Scholar
  48. 48.
    J. Wu, H. Liu, Y. Wang, D. Xu, Y. Zhang, IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (2008)Google Scholar
  49. 49.
    A. Nikfarjam, A. Iraji, F. Razi, S.Z. Mortazavi, Sens. Actuators A Phys. 162, 1 (2010)CrossRefGoogle Scholar
  50. 50.
    M.S.M. Saheed, N. Muti Mohamed, Z.A. Burhanudin, Appl. Phys. Lett. 104(12), 123105 (2014)CrossRefGoogle Scholar
  51. 51.
    D.W.H. Fam, A. Palaniappan, A.I.Y. Tok, B. Liedberg, S.M. Moochhala, Sens. Actuators B. Chem. 157, 1 (2011)CrossRefGoogle Scholar
  52. 52.
    R. Rao et al., ACS Nano 12, 12 (2018)CrossRefGoogle Scholar
  53. 53.
    Q. Zou, M.Z. Wang, Y.G. Li, L.H. Zou, J. Exp. Nanosci. 6, 3 (2011)CrossRefGoogle Scholar
  54. 54.
    C. Andersson, H. Grennberg, Eur. J. Org. Chem. 26, 4421 (2009)CrossRefGoogle Scholar
  55. 55.
    C. Chang, C. Huang, Y. Li, H. Cheng, Sens. Actuators, A 203, 1 (2013)CrossRefGoogle Scholar
  56. 56.
    M. Baghgar, Y. Abdi, E. Arzi, J. Phys. D 42, 135502 (2009)CrossRefGoogle Scholar
  57. 57.
    S.J. Kim, J. Phys. D Appl. Phys. 39, 14 (2006)CrossRefGoogle Scholar
  58. 58.
    Z. Yong, L. Junhua, L. Xin, T. Xiaojun, Z. Changchun, Sens. Actuators, A 125, 1 (2005)CrossRefGoogle Scholar
  59. 59.
    A. Wolfsteller, N. Geyer, T. Nguyen-Duc, P.D. Kanungo, N.D. Zakharov, M. Reiche, W. Erfurth, H. Blumtritt, S. Kalem, P. Werner, U. Gösele, Thin Solid Films 518(9), 2555 (2010)CrossRefGoogle Scholar
  60. 60.
    Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Adv. Mater. 23, 2 (2011)CrossRefGoogle Scholar
  61. 61.
    C. Chartier, S. Bastide, C. Lévy-Clément, Electrochim. Acta 53, 17 (2008)CrossRefGoogle Scholar
  62. 62.
    A. Fasoli, W.I. Milne, Mater. Sci. Semicond. Process. 15, 6 (2012)CrossRefGoogle Scholar
  63. 63.
    M.J. Madou, Fundamentals of Microfabrication and Nanotechology, Solid-State Physics, Fluidics and Analytical Techniques in Micro and Nanotechnology, 3rd edn. (CRC Press, New york, 2012)Google Scholar
  64. 64.
    P. Abedini Sohi, M. Kahrizi, IEEE Sens. J. 18, 15 (2018)CrossRefGoogle Scholar
  65. 65.
    P.A. Sohi, M. Kahrizi, IEEE Trans. Nanotechnol. 16, 3 (2017)CrossRefGoogle Scholar
  66. 66.
    P. Abedini Sohi, M. Kahrizi, IEEE Canadian Conference on Electrical & Computer Engineering (CCECE) (2018).
  67. 67.
    B.L. Vayssieres, Adv. Mater. 15, 5 (2003)CrossRefGoogle Scholar
  68. 68.
    H. Zhang, X. Ma, J. Xu, J. Niu, D. Yang, Nanotechnology 14, 4 (2003)CrossRefGoogle Scholar
  69. 69.
    J. Elias, C. Le, Electroanal. Chem. 621, 2 (2008)CrossRefGoogle Scholar
  70. 70.
    D. Dimova-malnovska, P. Andreev, M. Sendova-vassileva, H. Nichev, K. Starbova, Energy procedia 2, 1 (2010)CrossRefGoogle Scholar
  71. 71.
    J. Wang, M. Tian, N. Kumar, T.E. Mallouk, U.V. Park, V. Pennsyl, Nano Lett. 5, 7 (2005)Google Scholar
  72. 72.
    W. Lee, M. Jeong, J. Myoung, Nanotechnology 15, 2 (2004)Google Scholar
  73. 73.
    X. Liu, X. Wu, H. Cao, R.P. Chang, J. Appl. Phys. 95, 6 (2004)Google Scholar
  74. 74.
    Z.W. Pan, S.M. Mahurin, S. Dai, D.H. Lowndes, Nano Lett. 5, 4 (2005)Google Scholar
  75. 75.
    H. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, J. Cryst. Growth 287, 1 (2006)CrossRefGoogle Scholar
  76. 76.
    L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z. Shen, T. Yu, Nanotechnology 19, 17 (2008)Google Scholar
  77. 77.
    C. Li, G. Fang, N. Liu, J. Li, L. Liao, F. Su, G. Li, X. Wo, X. Zhao, J. Phys. Chem. C 111, 34 (2007)Google Scholar
  78. 78.
    S. Spitsina, M. Kahrizi, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society (2012).
  79. 79.
    S. Spitsina, M. Kahrizi, Sens. Mater. 28, 1 (2016)Google Scholar
  80. 80.
    T. Yamamoto, Thin Solid Films 421, 2 (2002)Google Scholar
  81. 81.
    S. Dhara, P.K. Giri, Thin Solid Films 520, 15 (2012)CrossRefGoogle Scholar
  82. 82.
    W. Li, C. Kong, G. Qin, H. Ruan, L. Fang, J. Alloys Compd. 609, 5 (2014)Google Scholar
  83. 83.
    M. Lu, M. Lu, L. Chen, Nano Energy 1, 2 (2012)CrossRefGoogle Scholar
  84. 84.
    R.B. Sadeghian, N. Chivu, M. Kahrizi, Sens. Mater. 21, 1 (2009)Google Scholar
  85. 85.
    R. B. Sadeghian, M. Kahrizi, SENSORS, IEEE (2007).
  86. 86.
    R. B. Sadeghian, M. Kahrizi, In 2007 IEEE International Symposium on Industrial Electronics (2007).
  87. 87.
    J.C. Hulteen, C.R. Martin, J. Mater. Chem. 1, 7 (1997)Google Scholar
  88. 88.
    P. Forrer, F. Schlottig, H. Siegenthaler, M. Tetor, J. Appl. Electrochem. 30, 5 (2000)CrossRefGoogle Scholar
  89. 89.
    R.B. Sadeghian, M. Kahrizi, IEEE Sens. J. 8(2), 161 (2008)CrossRefGoogle Scholar
  90. 90.
    R. Banan-sadeghian, S. Member, S. Badilescu, Y. Djaoued, S. Balaji, IEEE Electron Devices Lett. 29, 4 (2008)CrossRefGoogle Scholar
  91. 91.
    P. Goring, E. Pippel, H. Hofmeister, R.B. Wehrspohn, M. Steinhart, U. Go, Nano Lett. 4, 6 (2004)CrossRefGoogle Scholar
  92. 92.
    N. Chivu, M. Kahrizi, Sens. Transducers 153, 6 (2013)Google Scholar
  93. 93.
    N. Chivu, M. Kahrizi, IEEE International Conference on Industrial Technology (2012).
  94. 94.
    V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 1–2 (1995)CrossRefGoogle Scholar
  95. 95.
    C.K. Birdsall, L. Fellow, IEEE Trans. Plasma Sci. 19, 2 (1991)CrossRefGoogle Scholar
  96. 96.
    V. Serikov, K. Nanbu, IEEE Trans. Plasma Sci. 27, 1 (1999)CrossRefGoogle Scholar
  97. 97.
    D. Rapp, P. Golden, J. Chem. Phys. 43, 5 (2004)Google Scholar
  98. 98.
    L.G. Christophorou, J.K. Olthoff, Int. J. Mass Spectrom. 205, 1–3 (2001)CrossRefGoogle Scholar
  99. 99.
    P. Rawat, V.S. Prabhudesai, M.A. Rahman, N.B. Ram, E. Krishnakumar, Int. J. Hydrog. Energy 277, 1–3 (2008)Google Scholar
  100. 100.
    M.S. Wang, L. Peng, J.Y. Wang, Q. Chen, J. Phys. Chem. B 109, 1 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations