Advertisement

A facile one-pot method to prepare nitrogen and fluorine co-doped three-dimensional graphene-like materials for supercapacitors

  • Diancheng Duan
  • Fang Hu
  • Jiaojun Ma
  • Hongliang PengEmail author
  • Kexiang Zhang
  • Pengru Huang
  • Hailiang Chu
  • Xiangcheng Lin
  • Shujun Qiu
  • Siyue Wei
  • Fen Xu
  • Lixian SunEmail author
Article
  • 23 Downloads

Abstract

Nitrogen and fluorine co-doped three-dimensional(3D) graphene-like material, MP-700, is successfully prepared using a one-pot method by directly pyrolyzing melamine and PTFE in N2 flow. This 3D graphene-like material has a high specific surface area (1309 m2 g−1) and the N and F contents are is 19.03 and 0.41 at.%, respectively. Furthermore, it shows the high specific capacitance of 230 F g−1 at 0.5 A g−1; and exhibits long-term stability. After 10,000 cycles, the capacitance retention rate is 86.3% at 20 A g−1, which has a good prospect in the electrode materials of supercapacitors.

Notes

Acknowledgements

We gratefully acknowledge the financially supported by the National Science Foundation of China (51761006, 51671062, 51801041), the National Key Research and Development Program of China (2018YFB1502103), the National Science Foundation of Guangxi Province (2018JJA160046, AD17195073, 2017AD23029, 2017JJB150085) and Guangxi Bagui Scholar Foundation.

References

  1. 1.
    A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Chem. Rev. 118, 2302 (2018)CrossRefGoogle Scholar
  2. 2.
    Q. Liu, S. Zhang, J. Liao, K. Feng, Y. Zheng, B.G. Pollet, H. Li, J. Power Sour. 355, 191 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Zheng, L. Zhang, P. He, D. Dang, Q. Zeng, J. Zeng, M. Liu, Electrocatalysis 9, 495 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Song, A. Tang, G. Xu, L. Liu, Y. Pan, M. Yin, Int. J. Electrochem. Sci. 13, 6708 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Tian, J. Luo, H. Nan, H. Zou, R. Chen, T. Shu, X. Li, Y. Li, H. Song, S. Liao, R.R. Adzic, J. Am. Chem. Soc. 138, 1575 (2016)CrossRefGoogle Scholar
  6. 6.
    Q. Yi, H. Chu, M. Tang, Z. Yang, Q. Chen, X. Liu, J. Electroanal. Chem. 739, 178 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Liu, X. Yang, D. Dang, X. Tian, ChemElectroChem 6, 2208 (2019)CrossRefGoogle Scholar
  8. 8.
    A. Tang, Q. Zhong, G. Xu, H. Song, RSC Adv. 6, 84439 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Rahimi-Nasrabadi, H.R. Naderi, M.S. Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci. 28, 1877 (2017)Google Scholar
  10. 10.
    C. Xiang, Q. Wang, Y. Zou, P. Huang, H. Chu, S. Qiu, F. Xu, L. Sun, J. Mater. Chem. A 5, 9907 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Wu, L. Sun, F. Xu, D. Cai, J. Mater. Sci. Technol. 34, 2384 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Luo, L. Sun, F. Xu, S. Wei, Q. Wang, H. Peng, C. Chen, J. Mater. Sci. Technol. 34, 1412 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10, 313 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 29, 1605336 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Yan, T. Li, Y. Lu, J. Cheng, T. Peng, J. Xu, L. Yang, X. Hua, Y. Liu, Y. Luo, Dalton Trans. 45, 17980 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Peng, F. Liu, X. Liu, S. Liao, C. You, X. Tian, H. Nan, L. Fan, H. Song, Z. Fu, ACS Catal. 4, 3797 (2014)CrossRefGoogle Scholar
  17. 17.
    Q. Yi, Q. Chen, Electrochim. Acta 182, 96 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Deng, C. Li, X. Qiu, J. Zhou, Z. Hou, J. Electroanal. Chem. 755, 197 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Yu, Q. Yi, G. Li, Y. Chen, X. Yang, J. Electrochem. Soc. 165, A2502 (2018)CrossRefGoogle Scholar
  20. 20.
    Q. Yi, Y. Zhang, X. Liu, Y. Yang, Sci. China Chem. 57, 739 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong, B. Zhang, Sci. Rep. 3, 1765 (2013)CrossRefGoogle Scholar
  22. 22.
    Z. Deng, Q. Yi, G. Li, Y. Chen, X. Yang, H. Nie, Electrochim. Acta 279, 1 (2018)CrossRefGoogle Scholar
  23. 23.
    Y.F. An, Z.M. Li, Y.Y. Yang, B.S. Guo, Z.Y. Zhang, H.Y. Wu, Z.A. Hu, Adv. Mater. Interfaces 4, 10 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Mendoza-Sanchez, Y. Gogotsi, Adv. Mater. 28, 6104 (2016)CrossRefGoogle Scholar
  25. 25.
    J.P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 6, 2839 (2013)CrossRefGoogle Scholar
  26. 26.
    Q. Long, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Energy Environ. Sci. 6, 2497 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Peng, P. Huang, P. Yi, F. Xu, L. Sun, J. Mol. Struct. 1154, 590 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Ding, S. Ji, H. Wang, H. Gai, F. Liu, B.G. Pollet, R. Wang, Chem. Commun. 55, 2924 (2019)CrossRefGoogle Scholar
  29. 29.
    Y. Deng, Y. Xie, K. Zou, X. Ji, J. Mater. Chem. A 4, 1144 (2016)CrossRefGoogle Scholar
  30. 30.
    S.K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater. 31, 1804297 (2019)CrossRefGoogle Scholar
  31. 31.
    A. Akhundi, E.I. García-López, G. Marcì, A. Habibi-Yangjeh, L. Palmisano, Res. Chem. Intermed. 43, 5153 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 504, 697 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Sevilla, R. Mokaya, Energy Environ. Sci. 7, 1250 (2014)CrossRefGoogle Scholar
  34. 34.
    L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Adv. Funct. Mater. 24, 5104 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T.A. Strobel, L. Tao, F. Gao, Nat. Commun. 6, 8503 (2015)CrossRefGoogle Scholar
  36. 36.
    C.L. Wang, L. Sun, Y. Zhou, P. Wan, X. Zhang, J.S. Qiu, Carbon 59, 537 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Karuppannan, Y. Kim, Y.-E. Sung, O.J. Kwon, J. Appl. Electrochem. 49, 57 (2019)CrossRefGoogle Scholar
  38. 38.
    P. Sivakumar, M. Jana, M. Kota, H.S. Lee, H.S. Park, J. Alloys Compd. 781, 515 (2019)CrossRefGoogle Scholar
  39. 39.
    F. Bahmani, S.H. Kazemi, H. Kazemi, M. Kiani, S.Y. Feizabadi, J. Alloys Compd. 784, 500 (2019)CrossRefGoogle Scholar
  40. 40.
    M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, M.G. Maragheh, J. Mater. Sci. 29, 5163 (2018)Google Scholar
  41. 41.
    H. Peng, F. Liu, X. Qiao, Z. Xiong, X. Li, T. Shu, S. Liao, Electrochim. Acta 182, 963 (2015)CrossRefGoogle Scholar
  42. 42.
    J. Chen, H.M. Wei, H.J. Chen, W.H. Yao, H.L. Lin, S. Han, Electrochim. Acta 271, 49 (2018)CrossRefGoogle Scholar
  43. 43.
    C. Shao, S. Qiu, H. Chu, Y. Zou, C. Xiang, F. Xu, L. Sun, Catal. Today 318, 150 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Zhou, Z.S. Zhang, W. Xing, J. Yu, G.X. Han, W.J. Si, S.P. Zhuo, Electrochim. Acta 153, 68 (2015)CrossRefGoogle Scholar
  45. 45.
    D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, J. Phys. Chem. C 112, 9950 (2008)CrossRefGoogle Scholar
  46. 46.
    L. Miao, D.Z. Zhu, M.X. Liu, H. Duan, Z.W. Wang, Y.K. Lv, W. Xiong, Q.J. Zhu, L.C. Li, X.L. Chai, L.H. Gan, Chem. Eng. J. 347, 233 (2018)CrossRefGoogle Scholar
  47. 47.
    D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. 28, 7784 (2017)Google Scholar
  48. 48.
    Y.L. Wang, B.B. Chang, D.X. Guan, X.P. Dong, J. Solid State Electrochem. 19, 1783 (2015)CrossRefGoogle Scholar
  49. 49.
    D. Dastan, JAMCNP 2, 109 (2015)Google Scholar
  50. 50.
    D. Dastan, Appl. Phys. A 123, 699 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2008)CrossRefGoogle Scholar
  52. 52.
    K. Yokoyama, S. Yokoyama, Y. Sato, K. Hirano, S. Hashiguchi, K. Motomiya, H. Ohta, H. Takahashi, K. Tohji, Y. Sato, J. Mater. Chem. A 4, 9184 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Kundu, W. Xia, W. Busser, M. Becker, D.A. Schmidt, M. Havenith, M. Muhler, Phys. Chem. Chem. Phys. 12, 4351 (2010)CrossRefGoogle Scholar
  54. 54.
    K. Bushimata, S.I. Ogino, K. Hirano, T. Yabune, K. Sato, T. Itoh, K. Motomiya, K. Yokoyama, D. Mabuchi, H. Nishizaka, G. Yamamoto, T. Hashida, K. Tohji, Y. Sato, J. Phys. Chem. C 118, 14948 (2014)CrossRefGoogle Scholar
  55. 55.
    J. Lahaye, G. Nanse, A. Bagreev, V. Strelko, Carbon 37, 585 (1999)CrossRefGoogle Scholar
  56. 56.
    T. Sharifi, G. Hu, X.E. Jia, T. Wagberg, ACS Nano 6, 8904 (2012)CrossRefGoogle Scholar
  57. 57.
    L. Chao, J. Zhuang, X. Yong, M. Zheng, H. Hang, H. Dong, B. Lei, H. Zhang, Y. Liu, J. Power Sour. 310, 145 (2016)CrossRefGoogle Scholar
  58. 58.
    W. Qian, J. Yan, Y. Wang, W. Tong, M. Zhang, X. Jing, Z. Fan, Carbon 67, 119 (2014)CrossRefGoogle Scholar
  59. 59.
    K. Ghosh, M. Kumar, T. Maruyama, Y. Ando, Carbon 48, 191 (2010)CrossRefGoogle Scholar
  60. 60.
    W. Na, J. Jun, J.W. Park, G. Leea, J. Jang, J. Mater. Chem. A 5, 17379 (2017)CrossRefGoogle Scholar
  61. 61.
    D.Y. Qu, X.K. Feng, X. Wei, L.P. Guo, H.P. Cai, H.L. Tang, Z.Z. Xie, Appl. Surf. Sci. 413, 344 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations