Advertisement

Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites

  • Swagatika DashEmail author
  • R. N. P. Choudhary
  • Ashok Kumar
  • M. N. Goswami
Article
  • 12 Downloads

Abstract

The ceramic-polymer composites, consisting of (Bi0.5K0.5)(Fe0.5Nb0.5)O3 [BKFN] as fillers and poly (vinylidene fluoride) (PVDF) as matrix, with different ratios (weight ratio of BKFN to PVDF, are 10%, 30% and 50%) have been prepared by using a solution casting method. The X-ray diffraction (XRD) pattern evidenced a semi-crystalline structure containing mixed α-, β- and γ- phases of PVDF which was further confirmed by Fourier transform-infrared spectroscopy. Using scanning electron micrograph, the dispersion of the particulate filler in PVDF matrix is examined. With an increase of BKFN content, in the BKFN–PVDF composite films, both the dielectric constant and remnant polarizations showed a remarkable increase as compared to those of PVDF. Different theoretical models were proposed with experimental data to determine the effective dielectric constants of the prepared composites. Also, increased optical band gap is observed due to addition of BKFN in PVDF.

Notes

Acknowledgements

The authors are grateful to Dr. ManoranjanKar, IIT Patna for carrying out SEM.

References

  1. 1.
    R.K. Goyal, S.S. Katkade, D.M. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites B 44, 128–132 (2013)CrossRefGoogle Scholar
  2. 2.
    Q. Xiao, L. Li, B.Q. Zhang, X.M. Chen, Poly-vinylidene fluoride-modified BaTiO3 composites with high dielectric constant and temperature stability. Ceram. Int. 39, S3–S7 (2013)CrossRefGoogle Scholar
  3. 3.
    I. Pleşa, P.V. Noţingher, S. Schlögl, C. Sumereder, M. Muhr, Properties of polymer composites used in high-voltage applications. Polymers (2016).  https://doi.org/10.3390/polym8050173 CrossRefGoogle Scholar
  4. 4.
    V.S. Nisa, S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, R. Ratheesh, Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos. Sci. Technol. 68, 106–112 (2008)CrossRefGoogle Scholar
  5. 5.
    P. Mishra, P. Kumar, Enhancement of dielectric properties of 0.2[BZT-BCT]–0.8[(1–x) epoxy–xCCTO] (x = 0.02, 0.04, 0.06, 0.08 & 0.1) composites for embedded capacitor and energy harvesting applications. J. Alloy. Compd. 617, 899–904 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Longcheng, G. Liang, Y. Shen, G. Aijuan, L. Yuan, Preparation of high k expanded graphite/CaCuTi4O12/cyanate ester composites with low dielectric loss through controlling the interfacial action between conductors and ceramics. Composites B 58, 66–75 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Wang, W. Li, H. Jiang, M. Xue, L. Jinshan, J. Yao, Preparation and dielectric properties of Ba0.95Ca0.05Ti0.8Zr0.2O3-polyethersulfone composites. J. Appl. Phys. 107, 043528 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Djidjelli, D. Benachour, A. Boukerrou, O. Zefouni, J. Martinez-Véga, J. Farenc, M. Kaci, Thermal, dielectric and mechanical study of poly (vinyl chloride)/olive pomace composites. Express Polym. Lett. 1, 846–852 (2007)CrossRefGoogle Scholar
  10. 10.
    C. Muralidhar, P.K.C. Pillai, Dielectric behaviour of barium titanate BaTiO3/polyvinylidene fluoride (PVDF) composite. J. Mater. Sci. Lett. 6, 346–348 (1987)CrossRefGoogle Scholar
  11. 11.
    J. Liu, L. Xiaolong, W. Chunrui, Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes 3, 389–405 (2013)CrossRefGoogle Scholar
  12. 12.
    V. Revathii, S.D. Kumar, V. Subramanian, M. Chellamuthu, BMFO-PVDF electrospun fiber based tunable met a material structures for electromagnetic interference shielding in microwave frequency region. Eur. Phys. J. Appl. Phys. 72, 20402 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym Lett. 4(10), 632–643 (2010)CrossRefGoogle Scholar
  14. 14.
    A.K. Zak, W.C. Gan, W.H.A. Majid, M. Darroudi, T.S. Velayutham, Fabrication of PVDF-TrFE based bilayered PbTiO3/PVDF-TrFE films capacitor. Ceram. Int. 37, 1653–1660 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Satapathy, P.K. Gupta, K.B.R. Varma, Enhancement of nonvolatile polarization and pyroelectric sensitivity in lithium tantalate (LT)/poly(vinylidene fluoride) (PVDF) nanocomposite. J. Phys. D 42, 055402 (2009)CrossRefGoogle Scholar
  16. 16.
    B. Luo, X. Wang, Y. Wang, L. Li, Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 500 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Dash, R.N.P. Choudhary, P.R. Das, A. Kumar, Structural, dielectric and multiferroic properties (Bi05K05)(Fe05Nb05)O3. Can. J. Phys. (2014).  https://doi.org/10.1139/cjp-2014-0025 CrossRefGoogle Scholar
  18. 18.
    L. Xiaochi, W. Bian, B. Quan, Z. Wang, H. Zhu, Q. Zhang, Compositional tailoring effect on ZnGa2O4-TiO2 ceramics for tunable microwave dielectric properties. J. Alloy. Compd. 792, 742–749 (2019)CrossRefGoogle Scholar
  19. 19.
    B. Quan, W. Liu, X. Guoyue, G. Ji, D. Youwei, Nano sulfur particles decorated bi-lamella composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 543, 138–146 (2019)CrossRefGoogle Scholar
  20. 20.
    S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0-3 connectivity. J. Alloy. Compd. 715, 29–36 (2017)CrossRefGoogle Scholar
  21. 21.
    N. Adhlakha, K.L. Yadav, R. Singh, BiFeO3–CoFe2O4–PbTiO3 composites: structural, multiferroic, and optical characteristics. J. Mater. Sci. (2014).  https://doi.org/10.1007/s10853-014-8769-z CrossRefGoogle Scholar
  22. 22.
    S. Dash, R.N.P. Choudhary, Effect of Li-Nb Co-doping on structural, dielectric, optical and multiferroic properties of BiFeO3. J. Electron. Mater. 45, 4129–4137 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Xu, F. Zhang, B. Sun, Y. Du, G. Li, W. Zhang, Enhanced photocatalytic property of Cu doped sodium niobate. Int. J. Photoenergy 2015, Article ID 846121Google Scholar
  24. 24.
    J.-F. Liu, X.-L. Li, Y.-D. Li, Synthesis and characterization of nanocrystallineniobates. J. Cryst. Growth 247, 419–424 (2003)CrossRefGoogle Scholar
  25. 25.
    R.G. Kumar, W. Ping, K. Sopiha, Ferroelectric KNbO3 nanofibers: synthesis, characterization and their application as a humidity nanosensor. Nanotechnology 27, 395607 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Peng, W. Peiyi, Two dimensional infrared correlation spectroscopic studies on the structure changes of PVDF during the melting process. Polymer 45, 5295–5299 (2004)CrossRefGoogle Scholar
  27. 27.
    P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Enhancement of β-phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidene fluoride) thin films. Appl. Clay Sci. 99, 149–159 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation. Polym Test 23, 791 (2004)CrossRefGoogle Scholar
  29. 29.
    D.-H. Kuo, C.-C. Chang, T.-Y. Su, W.-K. Wang, B.-Y. Lin, Dielectric properties of three ceramic/epoxy composites. Mater. Chem. Phys. 85, 201–206 (2004)CrossRefGoogle Scholar
  30. 30.
    R.K. Goyal, S.S. Katkade, D.M. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites B 44, 128–132 (2013)CrossRefGoogle Scholar
  31. 31.
    M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010)Google Scholar
  32. 32.
    B. Luo, X. Wang, Y. Wang, L. Li, Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 510 (2014)CrossRefGoogle Scholar
  33. 33.
    M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010)Google Scholar
  34. 34.
    S. Thomas, V.N. Deepu, P. Mohanan, M.T. Sebastian, Effect of filler content on the dielectric properties of PTFE/ZnAl2O4–TiO2 composites. J. Am. Ceram. Soc. 91, 1971–1975 (2008)CrossRefGoogle Scholar
  35. 35.
    P. Barber, S. Balasubramanian, S.G. YogeshAnguchamy, A. Wibowo, H. Gao, H.J. Ploehn, H.-C. zur Loye, Polymer composite and nano-composite dielectric materials for pulse power energy storage. Materials 2, 1697–1733 (2009).  https://doi.org/10.3390/ma2041697 CrossRefGoogle Scholar
  36. 36.
    M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010)Google Scholar
  37. 37.
    P. Thongsanitgarn, A. Watcharapasorn, S. Jiansirisomboon, Electrical and mechanical properties of PZT/PVDF 0–3 composites. Surf. Rev. Lett. 17, 1–7 (2010)CrossRefGoogle Scholar
  38. 38.
    M.A. Rahman, G.-S. Chung, Synthesis of PVDF-graphene nanocomposites and their properties. J. Alloys Compd. 581, 724–730 (2013)CrossRefGoogle Scholar
  39. 39.
    J.-H.L. Dong-Ho-Lee, D.-W. Kim, B.-K. Kim, H.-J. Je, Enhanced dielectric constant of polymer matrix composites using nano-BaTiO3 agglomerates. J. Ceram. Soc. Jpn. 118, 62–65 (2010)CrossRefGoogle Scholar
  40. 40.
    S.S. Ravikant, G. Gupta, S. Yadav, P.K. Dubey, V.N. Ojha, A. Kumar, Highly-sensitive potassium-tantalum-niobium oxide humidity sensor. Sensors Actuators 295, 133–140 (2019)CrossRefGoogle Scholar
  41. 41.
    F. Demichelis, E. Minetti-Mezzetti, A. Tagliaferro, E. Tresso, Optical properties of hydrogenated amorphous silicon. J. Appl. Phys. 59, 611 (1986)CrossRefGoogle Scholar
  42. 42.
    M.E. Sánchez-Vergara, J.C. Alonso-Huitron, A. Rodriguez-Gómez, J.N. Reider-Burstin, Determination of the optical GAP in thin films of amorphous dilithium phthalocyanine using the tauc and cody models. Molecules 17, 10000–10013 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Swagatika Dash
    • 1
    Email author
  • R. N. P. Choudhary
    • 1
  • Ashok Kumar
    • 2
  • M. N. Goswami
    • 3
  1. 1.Department of PhysicsSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia
  2. 2.National Physical LaboratoryDelhiIndia
  3. 3.Midnapore CollegeMedinipurIndia

Personalised recommendations