Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 21, pp 19147–19153 | Cite as

Wideband microwave absorption in thin nanocomposite films induced by a concentration gradient of mixed carbonaceous nanostructures

  • R. Jaiswar
  • C. Bailly
  • S. Hermans
  • J. P. Raskin
  • I. HuynenEmail author
Article
  • 74 Downloads

Abstract

Absorption in excess of 90% is induced over a 22 GHz bandwidth by the combination of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) dispersed in a polymer matrix. This performance is achieved by a stack of polymer films showing a concentration gradient of mixed CNTs and GNPs from layer to layer, having a total thickness of only \(0.76\,\lambda /4.\) Excellent agreement is observed from 18 to 40 GHz between the predicted and measured reflectivity and the resulting high absorption.

Notes

Acknowledgements

The authors are grateful to the National Fund for Scientific Research (F.R.S.-FNRS, Belgium) for supporting this research. This work is also supported by the Walloon region, and by the “Communauté Française de Belgique”, through the Project “Nano4waves” funded by its Research Program “Actions de Recherche Concertées”. Special thanks are also due to Mr. H. Mesfin for the fabrication of the composite layers and to Professor A. Delcorte for fruitful discussions in the frame of the Nano4waves Project. The help of S. Bebelmans, D. Magnin, J. Mahy, W. Malik and P. Simon for the various characterizations was also highly appreciated.

Supplementary material

10854_2019_2271_MOESM1_ESM.pdf (1.1 mb)
Electronic supplementary material 1 (PDF 1160 kb)

References

  1. 1.
    A. Khoshroo et al., J. Electroanal. Chem. 823, 61–66 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Amania et al., Anal. Biochem. 548, 53–59 (2018)CrossRefGoogle Scholar
  3. 3.
    H.R. Naderi et al., Appl. Surf. Sci. 423, 1025–1034 (2017)CrossRefGoogle Scholar
  4. 4.
    I.V. Zaporotskova et al., Mod. Electron. Mater. 2, 95–105 (2016)CrossRefGoogle Scholar
  5. 5.
    V.D.N. Bezzon et al., Adv. Mater. Sci. Eng. 4, 1–21 (2019)CrossRefGoogle Scholar
  6. 6.
    S. Revathia et al., Int. J. Electron. Electr. Comput. Syst. 7, 9–16 (2018)Google Scholar
  7. 7.
    J. Pena-Bahamonde et al., J. Nanobiotechnol. 16, 1–17 (2018)CrossRefGoogle Scholar
  8. 8.
    G. Ijeomah et al., Int. J. Nano Biomater. 6, 83–109 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Fekri Aval et al., Heliyon 4, 1–17 (2018)Google Scholar
  10. 10.
    A. Bakandritsos et al., FlatChem 13, 25–33 (2019)CrossRefGoogle Scholar
  11. 11.
    J.-B. Kim et al., Compos. Sci. Technol. 68, 2909 (2008)CrossRefGoogle Scholar
  12. 12.
    J.-B. Kim, Adv. Compos. Mater. 21, 333 (2012)CrossRefGoogle Scholar
  13. 13.
    D. Micheli et al., IEEE Trans. Microw. Theory Tech. 59, 2633 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Micheli et al., in IEEE-NANO 2009. 9th IEEE Conference on Nanotechnology, 2009Google Scholar
  15. 15.
    D. Micheli et al., Acta Astronaut. 88, 61 (2013)CrossRefGoogle Scholar
  16. 16.
    G. De Bellis et al., Carbon 49, 4291 (2011)CrossRefGoogle Scholar
  17. 17.
    A.G. D’Aloia et al., Carbon 73, 175 (2014)CrossRefGoogle Scholar
  18. 18.
    I. Huynen et al., in 38th European Microwave Conference (EuMC), ISBN 978-2-87487-006-4 (2008)Google Scholar
  19. 19.
    Y. Danlee et al., Compos. Sci. Technol. 100, 182 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Potschke et al., Eur. Polym. J. 40, 137 (2004)CrossRefGoogle Scholar
  21. 21.
    N. Quiévy et al., IEEE Trans. Electromagn. Compat. 54, 43–51 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Resta et al., Vacuum 116, 82–89 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Sobon et al., Opt. Express 20, 19463–19473 (2012)CrossRefGoogle Scholar
  24. 24.
    U. Szeluga et al., Composites A 73, 204 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Sumfleth et al., J. Mater. Sci. 44, 3241 (2009)CrossRefGoogle Scholar
  26. 26.
    S.M. Zhang et al., eXPRESS Polym. Lett. 6, 159 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Li et al., Compos. Sci. Technol. 138, 209 (2017)CrossRefGoogle Scholar
  28. 28.
    D. Pozar, in Microwave Engineering, 2nd edn. (Wiley, New York, 1998)Google Scholar
  29. 29.
    K.-Y. Park et al., Compos. Sci. Technol. 66, 576–584 (2006)CrossRefGoogle Scholar
  30. 30.
    D. Micheli et al., Compos. Sci. Technol. 70, 400–409 (2010)CrossRefGoogle Scholar
  31. 31.
    D. Micheli et al., Acta Astronaut. 69, 747–757 (2011)CrossRefGoogle Scholar
  32. 32.
    D. Micheli et al., Carbon 77, 756–774 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICTEAM Institute, ELEN DivisionUniversité catholique de Louvain (UCLouvain)Louvain-la-NeuveBelgium
  2. 2.IMCN Institute, BSMA DivisionUCLouvainLouvain-la-NeuveBelgium
  3. 3.IMCN Institute, MOST DivisionUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations