Photocatalytic degradation of methyl orange by Eu doped SnO2 nanoparticles

  • T. T. Bhosale
  • A. R. Kuldeep
  • S. J. Pawar
  • B. S. ShirkeEmail author
  • K. M. GaradkarEmail author


An eco-friendly approach was adapted for the synthesis of Eu doped SnO2 nanoparticles (NPs) by using aqueous leaf extract of Calotropis gigantea. The attempt was made to see the effect of Eu content in SnO2 NPs on photocatalytic degradation of methyl orange (MO). The characterization of synthesized NPs was carried out by applying different techniques such as diffuse reflectance spectroscopy fourier transform-infrared spectroscopy, X-ray powder diffraction (XRD), high resolution-transmission electron microscopy, field emission-scanning electron microscopy, energy dispersive X-ray analysis and photoluminescence spectroscopy. The XRD results confirmed, the polycrystalline nature and tetragonal rutile phase of Eu3+ doped SnO2 NPs. Bandgap of pure SnO2 is 3.1 eV which is reduced to 3 eV for 0.1 mol% Eu3+ hence doping is responsible for bandgap narrowing. Consequently, up to 90% photocatalytic degradation of MO by 0.1 mol% Eu3+ doped SnO2 takes place within 3 h under UV–Vis light(λ = 365 nm). It is noted that doping of Eu enhances the efficiency of MO by 10%.



One of the authors KMG is gratefully acknowledges to Shivaji University, Kolhapur for providing research grant under Research Strengthening Scheme (File No. SU/BC U.D.Section/87/1385 Dated: 28/03/2019). We are also thankful to the SAIF-NEHU, Shillong for providing TEM facility.


  1. 1.
    J.C. Sin, S.M. Lam, I. Satoshi, K.T. Lee, A.R. Mohamed, Appl. Catal. B 148–149, 258 (2014)CrossRefGoogle Scholar
  2. 2.
    G.A. SuganyaJosephine, S. Ramachandran, A. Sivasamy, J. Saudi Chem. Soc. 19, 549 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Singh, T. Dutta, K. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. 16, 1 (2018)CrossRefGoogle Scholar
  4. 4.
    P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Saudi Pharma. J. 24, 473 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Raliya, P. Biswas, J.C. Tarafdar, Biotechnol. Rep. 5, 22 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Nabi, Q. Aain, N.R. Khalid, M.B. Tahir, M. Rafique, M. Rizwan, S. Hussain, T. Iqbal, A. Majid, J. Inorg. Organomet. 28, 1552 (2018)CrossRefGoogle Scholar
  7. 7.
    R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, J. Mater. Sci. 28, 10374 (2017)Google Scholar
  8. 8.
    S.S. Hassan, W. Azab, H.R. Ali, M.S. Mansour, Adv. Nat. Sci. 6, 1 (2015)Google Scholar
  9. 9.
    T.T. Bhosale, H.M. Shinde, N.L. Gavade, S.B. Babar, V.V. Gawade, S.R. Sabale, R.J. Kamble, B.S. Shirke, K.M. Garadkar, J. Mater. Sci. 29, 6826 (2018)Google Scholar
  10. 10.
    D. Chandran, L.S. Nair, S. Balachandran, K.R. Babu, M. Deepa, Bull. Mater. Sci. 39, 27 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Zhao, Y. Li, X. Ren, F. Gao, H. Zhao, Nanomaterials 7, 410 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Dieguez, A. Romano-Rodriguez, J.R. Morante, U. Weimar, M. Schweizer-Berberich, W. Gopel, Sens. Actuators B. 31, 1 (1996)CrossRefGoogle Scholar
  13. 13.
    A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, T.O. Mason, Materials 3, 4892 (2010)CrossRefGoogle Scholar
  14. 14.
    S.P. Kim, M.Y. Choi, H.C. Choi, Mater. Res. Bull. 74, 85 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun. 11, 1849 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008)CrossRefGoogle Scholar
  17. 17.
    L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Am. J. Mater. Sci. 2, 6 (2012)CrossRefGoogle Scholar
  18. 18.
    L.P. Singh, M.N. Luwang, S.K. Srivastava, New J. Chem. 38, 115 (2014)CrossRefGoogle Scholar
  19. 19.
    M.I. Dina, A.G. Nabia, A. Rania, A. Aihetashamb, M. Mukhtarb, ENMM 9, 29 (2018)Google Scholar
  20. 20.
    J. Sawahata, Thin Solid Films 656, 1 (2018)CrossRefGoogle Scholar
  21. 21.
    G. Wang, Y. Yang, Q. Mu, Y. Wang, J. Alloys Compd. 498, 81 (2010)CrossRefGoogle Scholar
  22. 22.
    S.V. Kite, D.J. Sathe, S.S. Patil, P.N. Bhosale, K.M. Garadkar, Mater. Res. Express 6, 1 (2019)Google Scholar
  23. 23.
    S. Haya, O. Brahmia, O. Halimi, M. Sebais, B. Boudine, Mater. Res. Express 4, 1 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Blessi, M.M.L. Sonia, S. Vijayalakshmi, S. Pauline, Int. J. Chem. Tech. Res. 6, 2153 (2014)Google Scholar
  25. 25.
    N.M. Shaalan, D. Hamad, A.Y. Abdel Latief, M.A. Abdel-Rahim, Prog. Nat. Sci. 26, 145 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Chen, J. Wang, F. Zhang, D. Yan, G. Zhang, R. Zhuo, P. Yan, J. Phys. D 41, 1 (2008)Google Scholar
  27. 27.
    G. Singh, N. Kohli, R.C. Singh, J. Mater. Sci. 28, 2257 (2017)Google Scholar
  28. 28.
    K. Yu, J. Shi, Z. Zhang, Y. Liang, W. Liu, J. Nanomater. 2013, 1 (2013)Google Scholar
  29. 29.
    U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, RSC Adv. 8, 17582 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Yang, X.J. Li, J.T. Chen, L.Y. Wang, J. Photochem. Photobiol. A 163, 517 (2004)CrossRefGoogle Scholar
  31. 31.
    N.U. Saqib, R. Adnan, I. Shah, Environ. Sci. Pollut. Res. 23, 15941 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Mallanaicker, M. Mani, S. Nallasivam, R. Ariyamuthu, M. Velayutham, RSC Adv. 6, 35024 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wange, S.H. Kim, Ceram. Int. 41, 7773 (2015)CrossRefGoogle Scholar
  34. 34.
    P.V. Korake, A.N. Kadam, K.M. Garadkar, J. Rare Earths 32, 306 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanomaterials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Material Science Laboratory, Department of ChemistryY. C. Warana MahavidyalayaWarananagarIndia
  3. 3.Department of PhysicsShri. Vijaysinha Yadav Arts & Science CollegePeth-VadgaonIndia

Personalised recommendations